All About Chemistry... 2011 and beyond

Related Stories

Chemists develop 'looking glass' for spotting sound molecular structures

New York University chemists have developed a computational approach for determining the viability and suitability of complex molecular structures -- an advancement that could aid in the development of pharmaceuticals as well as a range of other materials.

"Understanding how molecules interact and achieve stable conformations in different environments is vital to many industries," says Mark Tuckerman, a professor in NYU's Department of Chemistry and the senior author of the study, which appears in the journal Proceedings of the National Academy of Sciences. "However, the number of possible configurations is enormous, and the pathways leading to the most stable ones are complex, which makes these favored structures difficult to nail down in computational searches."

"Our results offer an approach that can aid in predicting these optimal structures, providing the potential to enhance the production of everything from over-the-counter drugs to new LED materials," adds Tuckerman, also a professor at NYU's Courant Institute of Mathematical Sciences and the NYU-East China Normal University Center for Computational Chemistry at NYU Shanghai.

Manufacturers need to know how to choose chemical compounds for a given function from a vast space of all possible compounds -- dissolving once ingested, and not in the bottle, in the case of pharmaceuticals, or maintaining their form under harsh weather conditions in the case of construction materials.

In order to understand the how best to go about predicting these structures, researchers rely on a construct called the free energy surface, a multidimensional mathematical object that reveals optimal spatial or geometrical configurations of a given system--whether it pertains to pharmaceuticals or computer chips. However, because the molecular constituents of such systems of interest and their interactions are often remarkably complex, elucidating these multi-dimensional free energy surfaces in order to derive the best "molecular answers" has presented significant challenges to scientists.

To help overcome this, the NYU team focused on a particular aspect of free energy surfaces: landmarks, which are considered, chemically and/or structurally, the most important features of these extremely complex, or high-dimensional, surfaces.

Specifically, relying on a computer simulation of free energy surfaces, they developed an algorithm designed to spot these landmarks while "seeing over" the terrain's high dimensionality.

The method, Tuckerman explains, "gives a rendering of a complex terrain that is computationally tractable by generating the most important and useful facets of free energy surfaces. From these facets, we can ultimately determine not only the most favored conformations of the constituent molecules and their spatial arrangements, but also the relative stability of these conformations and the likelihood of random conversions between them."

The paper's other authors are Ming Chen and Tang-Qing Yu, both doctoral candidates in NYU's Department of Chemistry.

The study was supported, in part, by a grant from the National Science Foundation (CHE-1301314)

Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners