Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Caging of molecules allows investigation of equilibrium thermodynamics

High performance materials for gas storage, thermal insulators or nanomachines need a thorough understanding of the behavior of the material down to the molecular level. Thermodynamics, which have been developed two hundred years ago to increase the efficiency of steam engines, typically observes and averages over a large number of molecules. Now a team of scientists has developed a methodology, to investigate the equilibrium thermodynamics of single molecules.

On the search for high performance materials for applications such as gas storage, thermal insulators or dynamic nanosystems it is essential to understand the thermal behavior of matter down to the molecular level. Classical thermodynamics average over time and over a large number of molecules. Within a three dimensional space single molecules can adopt an almost infinite number of states, making the assessment of individual species nearly impossible.

Now researchers from Technische Universität München (TUM) and Linköping University (LIU) have developed a methodology, which allows to explore equilibrium thermodynamics of single molecules with atomic resolution at appreciable temperatures. The breakthrough study is based on two pillars: a technology which allows to cage molecules within two-dimensional nanopores and extensive computational modelling.

At the Chair of Molecular Nanoscience and Chemical Physics of Interfaces at TU München, led by Prof. Dr. Johannes V. Barth, PD Dr. Florian Klappenberger developed the method to produce high-quality metal-organic networks on a silver surface. The network forms nanopores which restrict the freedom of movement of adsorbed single molecules in two-dimensions. Using scanning tunneling microscopy the researchers were able to track their motions at different temperatures with sub-nanometer resolution.

Parallel to the experiments, the researchers worked with sophisticated computer models to describe the temperature dependence of the dynamics of these single trapped molecules. "We have applied state-of-the-art supercomputer calculations to understand the interactions and energy landscape determining the motion of the molecules," says Jonas Björk of Linköping University.

Comparing experimental and modeled data the scientists unraveled that under certain conditions the integral theory approaches a simple projection of the molecular positions in space. This approach is central to statistical mechanics, but has never before been challenged to reproduce an experiment, due to the practically infinite molecular positions and energies one needed to consider without the nanoscale confinement.

"It was extremely exciting to employ two-dimensional networks as a confinement strategy to reduce the available conformational space of a single molecule, like a chaperone does with a protein," says Dr. Carlos-Andres Palma, the lead author of the study. "In analogy to biology, such form of confinement technology has the potential to establish sensors, nanomachines and possibly logic controlled by and made of molecular distributions."

Applying their knowledge of characteristic equilibrium configurations, the researchers carefully modulated the nanopore, thus making a single molecule write letters of the alphabet such as L, I and U, just by fine-tuning the temperature.

The research was funded by the European Research Council (ERC Advanced Grant MolArt) and the Swedish Research Council. The Swedish National Supercomputing Center provided supercomputing resources. The research group of Professor Barth is member of the Catalysis Research Center (CRC) of the TUM.

Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners