Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Rare 'baby rattle' molecules reveal new quantum properties of H2O and H2

The experiments were carried out on endofullerenes, molecules of C60 into which smaller molecules of hydrogen (H2) had been inserted. The results, published in Physical Review Letters, represent the first known example of a quantum selection rule found in a molecule.

Similar techniques were also used by the same team to uncover an exciting new symmetry-breaking interaction of water molecules with C60 cages, published last month in Physical Chemistry Chemical Physics.

The use of fullerenes such as C60 to trap smaller molecules, using cutting-edge molecular surgery techniques, was pioneered over the last decade. A complex series of chemical reactions is needed to open an orifice in the C60 cage which allows the smaller molecule to be inserted at high pressures to form a sealed structure that resembles a baby's rattle. The resulting complex provides a 'nanolaboratory' environment ideal for examining the trapped molecule via spectroscopic techniques.

By exposing the samples to a continuous beam of neutrons, the energy levels of the molecular complex can be accurately determined. The use of neutrons is ideal for experiments of this kind owing to their fundamental magnetic spin, which allows them to drive a wider range of transitions than would be possible with photons.

The neutron scattering experiments conducted with a mixture of ortho- and para-hydrogen showed that a number of forbidden transitions from the para-H2 ground state were systematically absent from the resultant spectra. This confirmed the existence of a molecular selection rule, a discovery which runs counter to the widely held view that such molecular compounds are not subject to any selection rules.

Prof Mark Johnson, who contributed to the experimental work undertaken at ILL, said "This is a fantastic example of an international collaboration to study a unique sample of which only tens of milligrams exist worldwide. The Japanese first learned how to open up C60, and the collaboration with researchers in New York gave an improved understanding of these quantum systems. Tiny quantities of the sample were exposed to the world's highest neutron flux at the ILL in experiments that would not have been possible some years ago."

He added "The experiments provide a way of isolating hydrogen in what is effectively a spherical environment, whose symmetry makes the theoretical calculations a great deal easier. Such well-defined systems, which have not existed to date, provide an excellent test bed for quantum theory."

Similar experiments conducted with forms of H2O known as ortho- and para- water also revealed a previously undiscovered splitting of the ortho-H2O ground state, pointing to a symmetry-breaking interaction which arises when the molecules are isolated in the C60 cages. Whether the molecular confinement or a set of longer range interactions is responsible for the observed symmetry breaking is a topic of considerable interest and one worthy of further research.

Story Source:

The above story is based on materials provided by Institut Laue-Langevin. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners