Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Major breakthrough in new MRI scan technology for lung disease

New scanning technology which will give a much clearer picture of lung disease has taken a major step forward thanks to scientists at The University of Nottingham.

The experts at the Sir Peter Mansfield Imaging Centre have developed a process using specially treated krypton gas as an inhalable contrast agent to make the spaces inside the lungs show up on an Magnetic resonance imaging (MRI) scan. It's hoped the new process will eventually allow doctors to virtually see inside the lungs of patients.

Traditional magnetic resonance imaging uses hydrogen protons in the body as molecular targets to give a picture of tissue but this does not give a detailed picture of the lungs because they are full of air. Recent technological developments have led to a novel imaging methodology called Inhaled Hyperpolarised Gas MRI that uses lasers to 'hyperpolarise' a noble (inert) gas which aligns (polarises) the nuclei of the gas so it shows up on an MRI scan.

The work will make 3D imaging using 'atomic spies' like helium, xenon, or krypton possible in a single breath hold by the patient. Nottingham has pioneered hyperpolarized krypton MRI and is currently advancing this technology towards the clinical approval processes.

Hyperpolarised MRI research has been trying to overcome a problem with these noble gases retaining their hyperpolarised state for long enough for the gas to be inhaled, held in the lungs and scanned. Now in a paper published in the Proceedings of the National Academy of Sciences, the Nottingham team has developed a new technique to generate hyperpolarised krypton gas at high purity, a step that will significantly facilitate the use of this new contrast agent for pulmonary MRI.

Chair in Translational Imaging at the Sir Peter Mansfield Imaging Centre, Professor Thomas Meersmann, said: "It is particularly demanding to retain the hyperpolarized state of krypton during preparation of this contrast agent. We have solved a problem by using a process that is usually associated with clean energy related sciences. It's called catalytic hydrogen combustion. To hyperpolarise the krypton-83 gas we diluted it in molecular hydrogen gas for the laser pumping process. After successful laser treatment the hydrogen gas is mixed with molecular oxygen and literally exploded it away in a safe and controlled fashion through a catalysed combustion reaction.

"Remarkably, the hyperpolarized state of krypton-83 'survives' the combustion event. Water vapour, the sole product of the 'clean' hydrogen reaction, is easily removed through condensation, leaving behind the purified laser-polarized krypton-83 gas diluted only by small remaining quantities of harmless water vapour. This development significantly improves the potential usefulness of laser-pumped krypton-83 as MRI contrast agent for clinical applications."

This new technique can also be used to hyperpolarise another useful noble gas, xenon-129, and may lead to a cheaper and easier production of this contrast agent.

As part of a recent Medical Research Council funding award, hyperpolarised krypton-83 is currently being developed for whole body MRI at high magnetic field strength in the Sir Peter Mansfield Imaging Centre's large 7 Tesla scanner. Studies will be carried out first on healthy volunteers before progressing to patient trials at a later phase.

Story Source:

The above post is reprinted from materials provided by University of Nottingham. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners