Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Non-brittle glass possible: In probing mysteries of glass, researchers find a key to toughness

Feb. 26, 2013 — In a paper published online Feb. 26 in the journal Nature Communications, a Yale University team and collaborators propose a way of predicting whether a given glass will be brittle or ductile -- a desirable property typically associated with metals like steel or aluminum -- and assert that any glass could have either quality.

Ductility refers to a material's plasticity, or its ability to change shape without breaking.

"Most of us think of glasses as brittle, but our finding shows that any glass can be made ductile or brittle," said Jan Schroers, a professor of mechanical engineering and materials science at Yale, who led the research with Golden Kumar, a professor at Texas Tech University. "We identified a special temperature that tells you whether you form a ductile or brittle glass."

The key to forming a ductile glass, they said, is cooling it fast. Exactly how fast depends on the nature of the specific glass.

Focusing on a new group of glasses known as bulk metallic glasses (BMGs) -- metal alloys, or blends, that can be extremely pliable yet also as strong as steel -- researchers studied the effect of a so-called critical fictive temperature (CFT) on the glasses' mechanical properties at room temperature.

When forming from liquid, there is a temperature at which glass becomes too viscous for reconfiguration and freezes. This temperature is called the glass transition temperature. Based on experiments with three representative bulk metallic glasses, the researchers said there is also, for each distinct alloy, a critical temperature that determines the brittleness or plasticity of the glass. This is the CFT.

Researchers said it's possible to categorize glasses in two groups -- those that will be brittle because in liquid form their CFT is above the glass transition temperature, and those that will be ductile, because in liquid form their CFT is below the glass transition temperature.

They previously thought a liquid's chemical composition alone would determine whether a glass would be brittle or ductile.

"That's not the case," Schroers said. "We can make any glass theoretically ductile or brittle. And it is the critical fictive temperature which determines how experimentally difficult it is to make a ductile glass. That is the major contribution of this work."

The finding applies theoretically to all glasses, not metallic glasses only, he said.

"A glass can have completely different properties depending on the rate at which you cool it," Schroers said. "If you cool it fast, it is very ductile, and if you cool it slow it¹s very brittle. We anticipate that our finding will contribute to the design of ductile glasses, and in general contribute to a deeper understanding of glass formation."


Journal Reference:

  1. Golden Kumar, Pascal Neibecker, Yan Hui Liu, Jan Schroers. Critical fictive temperature for plasticity in metallic glasses. Nature Communications, 2013; 4: 1536 DOI: 10.1038/ncomms2546

Note: If no author is given, the source is cited instead.

The source of this article can be found at: http://www.eurekalert.org/pub_releases/2013-02/yu-ipm022613.php

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners