Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond
Bacteria, bacteria

Related Stories

Study reveals working of motor with revolution motion in bacteria-killing virus; Advances nanotechnology

Mar. 20, 2013 — Scientists have cracked a 35-year-old mystery about the workings of the natural motors that are serving as models for development of a futuristic genre of synthetic nanomotors that pump therapeutic DNA, RNA or drugs into individual diseased cells. Their report revealing the innermost mechanisms of these nanomotors in a bacteria-killing virus -- and a new way to move DNA through cells -- is being published online today in the journal ACS Nano.

Peixuan Guo and colleagues explain that two motors have been found in nature: A linear motor and a rotating motor. Now they report discovery of a third type, a revolving molecular motor. Guo pointed out that nanomotors will open the door to practical machines and other nanotechnology devices so small that 100,000 would fit across the width of a human hair.

One major natural prototype for those development efforts has been the motor that packages DNA into the shell of bacteriophage phi29, a virus that infects and kills bacteria. Guo's own research team wants to embed a synthetic version of that motor into nanomedical devices that are injected into the body, travel to diseased cells and pump in medication. A major barrier in doing so has been uncertainty and controversy about exactly how the phi29 motor moves. Scientists thought that it worked by rotating or spinning in the same motion as Earth turning on its axis.

In their ACS Nano paper, Guo, with his team Zhengyi Zhao, Emil Khisamutdinov and Chad Schwartz, challenges that idea. Indeed, they discovered that the phi29 motor moves DNA without any rotational motion. The motor moves DNA with a revolving in the same motion as revolving around the sun. "The revolution without rotation model could resolve a big conundrum troubling the past 35 years of painstaking investigation of the mechanism of these viral DNA packaging motors," the report states.

The authors acknowledge funding from the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health.

Illustrated videos of the mechanism can be found at http://nanobio.uky.edu/movie2013.html.


Journal Reference:

  1. Zhengyi Zhao, Emil Khisamutdinov, Chad Schwartz, Peixuan Guo. Mechanism of One-Way Traffic of Hexameric Phi29 DNA Packaging Motor with Four Electropositive Relaying Layers Facilitating Anti-Parallel Revolution. ACS Nano, 2013; 130320010630002 DOI: 10.1021/nn4002775

Note: If no author is given, the source is cited instead.

The source of this article can be found at: acs.org/portal/acs/corg/content%3F_nfpb%3Dtrue%26amp%3B_pageLabel%3DPP_ARTICLEMAIN%26amp%3Bnode_id%3D223%26amp%3Bcontent_id%3DCNBP_032458%26amp%3Buse_sec%3Dtrue%26amp%3Bsec_url_var%3Dregion1%26amp%3B__uuid%3D7cc3a21e-a117-4534-840d-89892175be9d' target='_blank'>http://portal.acs.org/portal/acs/corg/content%3F_nfpb%3Dtrue%26amp%3B_pageLabel%3DPP_ARTICLEMAIN%26amp%3Bnode_id%3D223%26amp%3Bcontent_id%3DCNBP_032458%26amp%3Buse_sec%3Dtrue%26amp%3Bsec_url_var%3Dregion1%26amp%3B__uuid%3D7cc3a21e-a117-4534-840d-89892175be9d

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners