Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond
Structure, Structure

Related Stories

Spider's super-thin ribbons key to silk tech

Nov. 5, 2013 — The silk of a spider feared for its venomous bite could be the key to creating new super-sticky films and wafer-thin electronics and sensors for medical implants that are highly compatible with the human body.

A team of scientists from Oxford University (UK) and The College of William and Mary (USA) studied the brown recluse spider [Loxosceles recluse] which produces super-thin ribbons of silk as opposed to the round fibres typically spun by spiders. The researchers report in the journal Advanced Materials how, in a world-first, they were able to reel and examine the unique properties of the brown recluse's silk ribbons.

Whilst the silk ribbons have the outstanding strength and toughness of standard spider silk their flat structure makes it possible to study the material's molecular structure in great detail and investigate what gives it its strength. The team found that the extreme thinness of the ribbons, which are up to 10 nanometres wide and only a few tens of nanometers thick, combined with its stiffness and the ability to adapt to the shapes of surfaces is what gives it its unprecedented adhesive properties. The team also found that the surface of the silk ribbons is covered with tiny, dot-like 'bumps' that the research team suspects further enhance adhesion.

'The enigmatic ribbon structure of these threads provides us with a window into spider silk in its simplest form,' said Professor Fritz Vollrath of Oxford University's Department of Zoology, an author of the study. 'All other silks are round, rope-like aggregates made up of many nano-scale filaments. This makes it virtually impossible to study in great detail the molecular structure of the silk itself, and the fundamentals for its great toughness.'

Professor Hannes Schniepp of The College of William and Mary, lead author of the report, said: 'We were able to modify an atomic force microscope to measure the rigidity of a single recluse fibre and discovered that this ribbon -- only a few molecules thick -- not only displays the great properties of other silks but allows us to probe its structure in unprecedented detail.'

This discovery is expected to have implications for the development of new super-sticky cling films and also for the manufacture of thin-film electronic devices, which might even be implanted as sensors in the human body -- where silks are highly valued for their outstanding combination of great mechanical strength and excellent biological compatibility.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners