Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Research paves path for hybrid nano-materials to replace pills, human tissue

Nov. 21, 2013 — A team of researchers has uncovered critical information that could help scientists understand how protein polymers interact with other self-assembling biopolymers. The research helps explain naturally occurring nano-material within cells and could one day lead to engineered bio-composites for drug delivery, artificial tissue, bio-sensing, or cancer diagnosis.

Results of this study, "Bionanocomposites: Differential Effects of Cellulose Nanocrystals on Protein Diblock Copolymers," were recently published in the American Chemical Society's BioMacromolecules. The findings were the result of a collaborative research project from the Polytechnic Institute of New York University (NYU-Poly) Montclare Lab for Protein Engineering and Molecular Design under the direction of Associate Professor of Chemical and Biomolecular Engineering Jin K. Montclare.

Bionanocomposites provide a singular area of research that incorporates biology, chemistry, materials science, engineering, and nanotechnology. Medical researchers believe they hold particular promise because -- unlike the materials that build today's medical implants, for example -- they are biodegradable and biocompatible, not subject to rejection by the body's immune defenses. As biocomposites rarely exist isolated from other substances in nature, scientists do not yet understand how they interact with other materials such as lipids, nucleic acids, or other organic materials and on a molecular level. This study, which explored the ways in which protein polymers interact with another biopolymer, cellulose, provides the key to better understanding how biocomposite materials would interact with the human body for medical applications.

The materials analyzed were composed of bioengineered protein polymers and cellulose nanocrystals and hold promise for medical applications including non-toxic, targeted drug delivery systems. Such bionanocomposites could also be used as scaffolding for tissue growth, synthetic biomaterials, or an environmentally friendly replacement for petroleum-derived polymers currently in use.


Journal Reference:

  1. Jennifer S. Haghpanah, Raymond Tu, Sandra Da Silva, Deng Yan, Silvana Mueller, Christoph Weder, E. Johan Foster, Iulia Sacui, Jeffery W. Gilman, Jin Kim Montclare. Bionanocomposites: Differential Effects of Cellulose Nanocrystals on Protein Diblock Copolymers. Biomacromolecules, 2013; : 131106140141000 DOI: 10.1021/bm401304w

Note: If no author is given, the source is cited instead.

The source of this article can be found at: nano-materials-could-replace-human-tissue-or-tod" rel="nofollow' target='_blank'>http://www.poly.edu/press-release/2013/11/21/research-paves-path-hybrid-nano-materials-could-replace-human-tissue-or-tod" rel="nofollow

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners