Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Quest for quantum computing advanced

May 23, 2013 — Research teams from UW-Milwaukee and the University of York investigating the properties of ultra-thin films of new materials are helping bring quantum computing one step closer to reality.

An on-going collaboration between physicists from York and the University of Wisconsin, Milwaukee, USA, is focusing on understanding, tailoring and tuning the electronic properties of topological insulators (TI) - new materials with surfaces that host a quantum state of matter – at the nanoscale.

Understanding the properties of thin films of the new materials and integrating them with semiconductors is an important step in creating a materials platform for quantum computers. 

Professor Lian Li, from UW-Milwaukee, said: “The electrons on the surface of this material have some intriguing properties. All electrons are spinning in a quantum mechanical way, and spins are constantly knocked by random collisions (scattering).

“But on the surface of a topological insulator spinning electrons are protected from disruption by quantum effects, called time-reversal symmetry protection. This makes the materials attractive for spin-related electronics, or ‘spintronics’, which would use the orientation of the electron spin to encode information.

“In this work, we wanted to investigate if these properties of surface electrons are indeed ‘protected’ from scattering off of imperfections such as grain boundaries, a type of native and commonly found defect in the thin films made by nano size films growth techniques.  And we found that these properties, although slightly modified, are indeed robust against such scattering effects.”

Results of the team’s latest research, which shows that the unique properties of a TI can be modified by intrinsic defects present in Bi2Se3 films when grown on graphene/silicon carbide (SiC), were featured on the front cover of a recent issue of the journal Physical Review Letters.

Dr Vlado Lazarov, from York’s Department of Physics, said:  “Topological insulators are like no other material we have seen before and can host completely new physics. Their surfaces are unique charge and spin conductors, with no dissipation. The perfectly aligned spin currents make topological insulators a prime platform for spintronics, a research field that is already revolutionising magnetic data storage.

“The challenge is to keep these properties at the microscopic scale so that they can be applied to quantum computing. We are exploring the properties of thin films, and questions such as whether inherent defects enhance or modify the materialsproperties. We need to understand how to engineer these defects so that we can control the electronic properties of topological insulators if the dream of quantum computing is to become a reality.”

The York physicists carried out atomistic studies at the York JEOL Nanocentre at the University of York, a world-class research and teaching facility. The research was supported by the National Science Foundation, USA.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners