All About Chemistry... 2011 and beyond
Structure, Structure

Related Stories

Flexible, stretchable fire-ant rafts

Nov. 26, 2013 — What do Jell-O, toothpaste, and floating fire-ant rafts have in common? All are so-called "viscoelastic" materials, meaning that they can both resist flow under stress, like honey, and they can bounce back to their original shape when stretched or compressed, like rubber bands. As such, the materials neither behave exactly as solids or exactly as fluids, but as something in between.

And fire-ant rafts' unusual properties don't stop there, according to a new study presented in a talk at the upcoming American Physical Society's Division of Fluid Dynamics (DFD) meeting in Pittsburgh, Pa. Researchers found the rafts actively reorganize their structure, a feat that allows them to more effectively cushion themselves against applied forces, such as the battering of raindrops or the surges of waves.

According to study lead Zhongyang Liu, an undergraduate student in the laboratory of Georgia Tech mechanical engineer and biologist David Hu, fire ants form the rafts by linking their legs and jaws. "The linkage structure they form, similar to a truss structure, is elastic and so is able to sustain external forces," he said.

However, the structure of an ant raft is far from stationary. Indeed, it is in constant flux because the ants repeatedly form, break, and reform their body-part connections. Through these rearrangements, the researchers discovered, the raft is able to store energy (and thus acts as an elastic material) and dissipate energy (as a viscous material) to equivalent degrees -- a situation that has not been seen in any other active materials, such as bacteria films or liquid crystals. (Indeed, the researchers found, rafts made of dead ants don't show this feature; instead, they behave more like solid viscoelastic materials).

"This is our most important discovery," said Liu, who noted that the swarm intelligence that the ants use to accomplish their continual construction could be applied to robotics research. Furthermore, he added, "the special structure formed by the ants might inspire new research in material science."

Note: If no author is given, the source is cited instead.

The source of this article can be found at:" rel="nofollow

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners