Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Chemists' synthesis of silicon oxides opens 'new world in a grain of sand'

In an effort that reaches back to the 19th-century laboratories of Europe, a discovery by University of Georgia chemistry researchers establishes new research possibilities for silicon chemistry and the semiconductor industry.

The study, published April 20 in the journal Nature Chemistry, gives details on the first time chemists have been able to trap molecular species of silicon oxides.

Using a technique they developed in 2008, the UGA team succeeded in isolating silicon oxide fragments for the first time, at room temperature, by trapping them between stabilizing organic bases.

"In the 2008 discovery, we were able to stabilize the disilicon molecule, which previously could only be studied at extremely low temperatures on a solid argon matrix," said Gregory H. Robinson, UGA Foundation Distinguished Professor of Chemistry and the study's co-author. "We demonstrated that these organic bases could stabilize a variety of extremely reactive molecules at room temperature."

The columns, or groups, of elements of the periodic table generally share similar chemical properties. Group 14, for example, contains the element carbon, as well as silicon, the most carbon-like of all the elements. However, there are significant differences between the two. While the oxides of carbon, carbon dioxide and carbon monoxide are widely known, the molecular chemistry of corresponding silicon oxides is essentially unknown, due to the great reactivity of silicon-oxygen multiple bonds.

Silicon monoxide, on the other hand, has been described as the most abundant silicon oxide in the universe but, terrestrially it is only persistent at high temperatures, about 1,200 degrees Celsius. Naturally abundant silica ((SiO2)n) exists on Earth as sand--a network solid wherein each silicon atom bonds to four oxygen atoms in a process that repeats infinitely.

The paper reports two new compounds containing Si2O3 and Si2O4 cores that the team was able to isolate using the carbene stabilization technique. This synthetic strategy allowed the team to "tame" the highly reactive silicon oxide moieties at room temperature.

The discovery breaks open an area of chemistry where difficulty with synthetics has limited the research activity. Silicon-oxide materials are found in every electronic device and could hold many more applications and uses.

"Our technique seems to be an attractive means to approach a number of these highly reactive molecules," Robinson said. "We've found a backdoor to approaching molecular species that contain various silicon oxides."

Robinson's team includes department of chemistry colleagues Henry "Fritz" Schaefer, Yuzhong Wang, Yaoming Xie and the late Paul von Rague Schleyer.

"We have enjoyed a very productive collaboration since I arrived at UGA two decades ago now," Robinson said. "In our version of the famous quote by Robert F. Kennedy Jr., we ponder molecules that have never been synthesized, and we ask 'why not?'"

Story Source:

The above story is based on materials provided by University of Georgia. The original article was written by Alan Flurry. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners