All About Chemistry... 2011 and beyond

Related Stories

High power and high safety oxide-based negative electrode materials for Li-ion battery

Mixed Ti-Nb oxide Ti2Nb10O29 (TNO) is one of the negative electrode materials for large scale Li-ion battery with high safety because the potential (= 1.6 V vs. Li/Li+) for Li storage of TNO should avoid possible Li plating or formation of Li dendrites and the short circuit of the battery to fire the flammable organic liquid electrolyte.

TNO shows the reversible capacity of 250 mAh g-1 at low current rate and good cycle stability. However, TNO is insulating materials and its electronic conductivity is quite low, which leads to the poor electrochemical performance at high current rate.

Here, Toshiki Takashima, Ryoji Inada, Yoji Sakurai and colleagues at Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology show the improvement of electrochemical performance of TNO at high current rate by vacuum annealing.

The photos and X-ray diffraction patterns of TNO annealed in air and vacuum are compared in Fig. 1. Although the crystal structure is not changed by the difference annealing atmosphere, the color of TNO is changed from white to dark blue by vacuum annealing, indicating that the presence of the mixed Ti4+/Ti3+ ions.

Thermogravimetric analysis clearly shows small amount of oxygen vacancy is introduced by vacuum annealing, which causes partial reduction from Ti4+ to Ti3+ in TNO. By addressing this fact, vacuum-annealed TNO (V-TNO) shows much higher electronic conductivity (10-6?10-5 S cm-1) than air-annealed one (A-TNO) at room temperature.

Fig. 2 shows the comparison of charge and discharge curves of both A-TNO and V-TNO electrodes at various fixed current densities per unit electrode area of 0.5, 2, 4 and 7 mA cm-2. The charge and discharge capacities for both electrodes are decreased monotonically with increasing current densities, but V-TNO shows larger capacity than A-TNO under the current density above 2 mA cm-2. This tendency becomes more remarkable as the current density is increased.

The improved electrochemical performance of V-TNO electrode at high current rate is mainly attributed to enhancement of intrinsic electronic conductivity. V-TNO can potentially be used as novel negative electrode material of Li-ion battery with high power and high safety for large scale applications such as hybrid electric vehicles and Energy-Storage'>energy storage system.

Story Source:

The above story is based on materials provided by Toyohashi University of Technology. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners