Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond
Crystal

Related Stories

Plasmonic crystal alters to match light-frequency source: Device is like a photonic crystal, but smaller and tunable

Oct. 29, 2013 — Gems are known for the beauty of the light that passes through them. But it is the fixed atomic arrangements of these crystals that determine the light frequencies permitted passage.

Now a Sandia-led team has created a plasmonic, or plasma-containing, crystal that is tunable. The effect is achieved by adjusting a voltage applied to the plasma. Because the crystal then is agile in transmitting terahertz light at varying frequencies, it could increase the bandwidth of high-speed communication networks and generally enhance high-speed electronics.

"Our experiment is more than a curiosity precisely because our plasma resonances are widely tunable," says Sandia researcher Greg Dyer, co-primary investigator of a recently published online paper in Nature Photonics, expected in print in November. "Usually, electromagnetically induced transparencies in more widely known systems like atomic gases, photonic crystals and metamaterials require tuning a laser's frequencies to match a physical system. Here, we tune our system to match the radiation source. It's inverting the problem, in a sense."

Photonic crystals are artificially built to allow transmission of specific wavelengths. Metamaterials require micron- or nano-sized bumps to tailor interactions between humanmade structures and light. The plasmonic crystal, with its ability to direct light like a photonic crystal, along with its sub-wavelength, metamaterial-like size, in effect hybridizes the two concepts. Its methods could be used to shrink the size of photonic crystals and to develop tunable metamaterials.

The crystal's electron plasma forms naturally at the interface of semiconductors with different band gaps. It sloshes between their atomically smooth boundaries that, properly aligned, form a crystal. Patterned metal electrodes allow its properties to be reconfigured, altering its light transmission range. In addition, defects intentionally mixed into the electron fluid allow light to be transmitted where the crystal is normally opaque.

However, this crystal won't be coveted for the beauty of its light. First, the crystal transmits in the terahertz spectrum, a frequency range invisible to the human eye. And scientists must tweak the crystal's two-dimensional electron gas to electronically vary its output frequencies, something casual crystal buyers probably won't be able to do.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners