Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

New way to plug 'leaky' light cavities demonstrated

Engineers at the University of California, San Diego have demonstrated a new and more efficient way to trap light, using a phenomenon called bound states in the continuum (BIC) that was first proposed in the early days of quantum wave mechanics.

Boubacar Kanté, an assistant professor in electrical and computer engineering at UC San Diego Jacobs School of Engineering, and his postdoctoral researcher Thomas Lepetit described their BIC experiment online in the rapid communication section of journal Physical Review B. The study directly addresses one of the major challenges currently facing nanophotonics, as researchers look for ways to trap and use light for optical computing circuits and other devices such as tiny switches.

"The goal in the future is to make a computer that performs all kinds of operations using light, not electronics, because electronic circuits are relatively slow. We expect that an optical computer would be faster by three to four orders of magnitude." Kanté said. "But to do this, we have to be able to stop light and store it in some kind of cavity for an extensive amount of time."

To slow down and eventually localize light, researchers rely on cavities that trap light in the same way that sound is trapped in a cave. Waves continuously bounce off the walls of the cavity and only manage to escape after finding the narrow passage out. However, most current cavities are quite leaky, and have not one but multiple ways out. A cavity's capacity to retain light is measured by the quality factor Q -- the higher the Q, the less leaky the cavity.

Lepetit and Kanté sought a way around the leak problem by designing a metamaterials BIC device consisting of a rectangular metal waveguide and ceramic light scatterer. Instead of limiting the size and number of passages where light can escape the cavity, the cavity's design produces destructive interferences for the light waves. Light is allowed to escape, but the multiple waves that do so through the different passages end up cancelling each other.

"In a nutshell, BICs can enhance your high-Q," the researchers joked.

Other researchers have worked on ways to trap light with BIC, but the cavities have been constructed out of things like photonic crystals, which are relatively large and designed to scale to the same wavelength as light. The device tested by the UC San Diego researchers marks the first time BIC has been observed in metamaterials, and contains even smaller cavities, Kanté said.

The difference is important, he explains, "because if you want to make compact photonic devices in the future, you need to be able to store light in this subwavelength system."

Moreover, earlier researchers had reported observing only one BIC within their systems. Lepetit and Kanté observed multiple bound states in their system, which make the light trap more robust and less vulnerable to outside disruptions.

The researchers say trapping light via BIC will likely have a variety of other applications beyond circuitry and data storage. Since the system can hold light for an extended time, it may enhance certain nonlinear interactions between light and matter. These types of interactions can be important in applications such as biosensors that screen small molecules, or compact solar cells.

Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners