Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Controlling car pollution at the quantum level

Toyota Central R&D Labs. Inc. in Japan have reviewed research that might be leading the way towards a new generation of automotive catalytic converters.

Catalytic converters that change the toxic fumes of automobile exhaust to less toxic pollutants only reached the market in the mid-1970s. They are formed of a catalyst -- usually in the form of a precious metal such as platinum, palladium, or rhodium -- a catalyst support material, and a wash-coat designed to disperse the catalytic materials over a wide surface area.

Toyota Central R&D Labs. Inc. in Japan are involved in research to develop catalysts that are controlled at the quantum-level. With this level of control, "we can expect an extreme reduction of precious metal usage in automotive exhaust catalysts and/or fuel cells," says Dr. Yoshihide Watanabe, chief researcher at the Toyota Central R&D Labs in Japan.

He reviewed research on different types of catalytic reactions involving metal clusters whose sizes were atomically controlled.

Metal cluster chemistry has been developing rapidly since the mid-20th century. A cluster is a group of atoms or molecules formed by interactions varying in strength from very weak to strong. Some naturally occurring clusters are known to be involved in catalytic reactions. The study of metal clusters is inspiring great interest, partially for the potential use of synthetic clusters in industrial applications, such as catalysts in catalytic converters.

He pointed out that not much research has been done in the area of atomically controlled cluster catalysis, with the exception of studies on carbon monoxide oxidation reaction.

His research indicates that catalytic activity is strongly affected by the electronic structure of clusters, their geometry on a support material, and the interaction between the cluster and the material. Thus, the catalytic activity of clusters can be enhanced by controlling cluster size and the interaction between the clusters and the support material. This is important, because enhancing the catalytic activity of some clusters may greatly reduce the utilization of precious metals as catalytic agents. A few studies that try to understand how the catalytic properties of size-controlled clusters are affected at the quantum level. Although several mechanisms for these effects are suggested, the field is still in progress, he says.

As a result of his review, Watanabe recommends further studies that investigate how catalytic reaction rates are affected by temperature. He says that applying computer simulations, known as computational chemistry, can lead the way towards developing quantum-controlled catalysts formed from atomically precise clusters.

Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners