Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond
Catalyst

Related Stories

Mysterious catalyst explained: How tiny gold particles aid the production of plastic components

Apr. 30, 2013 — From methanol to formaldehyde -- this reaction is the starting point for the synthesis of many everyday plastics. Using catalysts made of gold particles, formaldehyde could be produced without the environmentally hazardous waste generated in conventional methods. Just how the mysterious gold catalyst works has been found out by theoretical and experimental researchers at the Ruhr-Universität Bochum in a cooperation project. In the international edition of the journal Angewandte Chemie they report in detail on what happens on the gold surface during the chemical reaction.

"Gold should not really be suitable as a catalyst."

"That nanoparticles of gold actually selectively transform methanol into formaldehyde is remarkable," says Prof. Dr. Martin Muhler of the Laboratory of Industrial Chemistry at the RUB. "As a stable precious metal, gold should not really be suitable as a catalyst." However, gold particles of a few nanometres in size, anchored to a titanium dioxide surface, fulfil their purpose. You only need oxygen to set the reaction in motion, and the only waste product is water. How this is achieved is examined by Muhler's team together with the groups of Prof. Dr. Dominik Marx of the Chair of Theoretical Chemistry and Dr. Yuemin Wang of the Department of Physical Chemistry I.

Oxygen binds at the interface between gold and titanium dioxide

The chemists identified the active site of the catalyst, i.e. the point at which the oxygen and methanol bind and are converted to water and formaldehyde. Elaborate calculations by Dr. Matteo Farnesi Camellone showed that oxygen binds at the interface between titanium dioxide and gold particles. Since titanium dioxide is a semiconductor, and thus electrically conductive, a charge exchange between oxygen, gold particles and titanium dioxide is possible here. Oxygen vacancies in the titanium dioxide further favour this charge transfer. Electrons transitionally transfer from the catalyst to the oxygen molecule. This allows the methanol to bind to the gold particles. In several further reaction steps, formaldehyde and water form. The solid, which consists of gold and titanium dioxide, is in the same state at the end of the reaction cycle as at the beginning, and is thus not consumed.

Experiment and theory: only the combination makes it possible

The RUB team clarified the individual reaction steps in detail. The researchers used computer simulations, so-called density functional calculations, and various spectroscopic techniques, namely, vibrational spectroscopy (HREELS method) and thermal desorption spectroscopy. In his model calculations, Dr. Farnesi quantified the charge exchange taking place during catalysis. Extremely sensitive vibrational spectroscopic measurements by Dr. Wang's group confirmed the consequences of the charge transfer in the real system. "Through an intensive cooperation between theory and experiment, we have been able to qualitatively and quantitatively explore the active site and the entire reaction mechanism of this complex catalyst," stresses Prof. Marx.


Journal Reference:

  1. Matteo Farnesi Camellone, Jianli Zhao, Lanying Jin, Yuemin Wang, Martin Muhler, Dominik Marx. Molecular Understanding of Reactivity and Selectivity for Methanol Oxidation at the Au/TiO2Interface. Angewandte Chemie International Edition, 2013; DOI: 10.1002/anie.201301868

Note: If no author is given, the source is cited instead.

The source of this article can be found at: http://aktuell.ruhr-uni-bochum.de/pm2013/pm00127.html.en

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners