Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Making Catalysts Smarter

Sep. 21, 2016 - The industrial catalysts of the future won’t just speed up reactions, they’ll control how chemical processes work and determine how much of a particular product is made.

A team of researchers led by Phillip Christopher, assistant professor of chemical and environmental engineering at the University of California, Riverside’s Bourns College of Engineering, demonstrated this—as well as how these catalysts look in action—in a paper published Monday, Sept. 19, in the journal Nature Chemistry.

Titled, “Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts,” the paper describes a new approach to dynamically tune how a catalyst operates, enabling the researchers to control and optimize the product made in the reaction. The team, which includes scientists from the University of California, Irvine and Columbia University, also used advanced microscopy and spectroscopy approaches to view the catalyst in action on an atomic scale.

The researchers focused on an important chemical reaction that involves the conversion of carbon dioxide to carbon monoxide and synthetic natural gas. The benefits of this reaction are two-fold: it offers the potential for the removal of harmful carbon dioxide from the atmosphere, and the carbon monoxide and natural gas produced can be used as a chemical precursor and fuel, respectively. The team focused on understanding how the catalyst drives the reaction at the atomic scale, which will allow researchers to modify the catalyst’s properties to increase efficiency in the reaction.

Christopher said the findings unlock new opportunities for carbon dioxide conversion chemistry, and the dynamic tuning and visualization techniques demonstrated in this research could be replicated in a variety of other important chemical processes.

“The real uniqueness of the paper was being able to observe what was happening at an atomic scale and how physical changes in the catalyst affected the outcome of the carbon dioxide conversion reaction. The insights we gained pave the way for the design of more effective processes to produce fuels and chemicals,” Christopher said.

John Matsubu, a graduate student in chemical engineering in Christopher’s lab, was the lead author on the paper. Other contributors included Leo DeRita, also a graduate student in chemical engineering at UCR; Shuyi Zhang, George Graham and Xiaoqing Pan from the University of California Irvine; and Nebojsa Marinkovic and Jingguang Chen from Columbia University. The research was funded primarily by the National Science Foundation, with additional support from the U.S. Department of Energy.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners