Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Cost-effective, solvothermal synthesis of heteroatom (S or N)-doped graphene developed

A research team led by group leader Yung-Eun Sung has announced that they have developed cost-effective technology to synthesize sulfur-doped and nitrogen-doped graphenes which can be applied as high performance electrodes for secondary batteries and fuel cells. Yung-Eun Sung is both a group leader at the Center for Nanoparticle Research at Institute for Basic Science (IBS) and a professor at the Seoul National University.

This achievement has great significance with regards to the development of relative simplicity, scalablity, and cost effectiveness processes that can produce heteroatom (S or N)-doped graphenes. Moreover, these materials enhance the performance of secondary batteries and drive down the cost of producing fuel cells. This process using common laboratory reagent, sodium hydroxide (NaOH) and heteroatom-containing organic solvents as precursors. The research team was able to synthesize sulfur-doped and nitrogen-doped graphenes by using a simple, single-step solvothermal method.

These heteroatom-doped graphene exhibited high surface areas and high contents of heteroatoms.In addition, the lithium-ion batteries that had modified graphenes applied to it, exhibited a higher capacity than the theoretical capacity of graphite which was previously used in lithium-ion batteries. It presented high chemical stability which resulted in no capacity degradation in charge and discharge experiments.

The heteroatom-doped graphenes suggest the potential to be employed as an effective, alternative chemical material by demonstrating performance comparable to that of the expensive platinum catalyst used for the cathode of Fuel-Cell'>fuel cell batteries. Platinum has a high profile because of its high chemical reactivity and electrocatalytic activity. However, limited resources and high expense have been stumbling blocks in its effective commercialization.

Group leader Yung-Eun Sung of the Center for Nanoparticle Research at IBS, says, "We expect that our synthetic approach will be developed to produce doped carbon materials based on other elements (e.g., florine, boron, phosphorus) which can then increase the method's potential applications in fuel cells, lithium secondary batteries, sensors, and semi-conductors."

Story Source:

The above story is based on materials provided by Institute for Basic Science. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners