Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

New perspectives to the design of molecular cages

Researchers from the University of Jyväskylä report a new method of building molecular cages. The method involves the exploitation of intermolecular steric effects to control the outcome of a self-assembly reaction.

Molecular cages are composed of organic molecules (ligands) which are bound to metal ions during a self-assembly process. Depending on the prevailing conditions, self-assembly processes urge to maximize the symmetry of the system and thus occupy every required metal binding site. The research group led by docent Manu Lahtinen (University of Jyväskylä, Department of Chemistry) developed a method in which sterically hindered ligands are used to seemingly disrupt the self-assembly process. This new strategy allows a ligand to occupy only two of the four potential binding sites of the metal. The created molecular cage presents a low symmetric tetrahedral intermediate product in a reaction that would generally yield a higher symmetric octahedral cage.

The reported results provide new insights on how self-assembly processes of metal-organic systems can be controlled. However, the most significant feature of the proposed method is the new way of building molecular cages with vacant metal binding sites. This creates an opportunity to modify the properties and behavior of pre-assembled cages by incorporating functionally significant molecules to partially exposed metal ions. The presented strategy provides a new concept to build more complex molecular cages.

Molecular cages are the materials of tomorrow

Molecular cages and capsules are hollow nano-sized (1 x 10-9 m) compounds that consist of organic molecules or ions and, in most cases, metal ions. They share many structural features with, for example, viruses whose shells (capsids) are composed of organized proteins. One of the most significant feature of molecular cages is their ability to bind and release guest molecules depending on the prevailing conditions. Hence, some of their most important potential applications include biomedicinal uses (transport of drugs), storing of unstable and/or reactive molecules and recovery of hazardous compounds from aquatic environment.

The present study was published in the journal Chemical Communications and is part of M.Sc. Anssi Peuronen's doctoral thesis that focuses on the study of structural chemistry of cationic ammonium compounds and is supervised by Docent Manu Lahtinen. The third member of the research group is M.Sc. student Samu Forsblom.

Story Source:

The above story is based on materials provided by Suomen Akatemia (Academy of Finland). Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners