Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond
cell, cell

Related Stories

Evolution inspires more efficient solar cell design: Geometric pattern maximizes time light is trapped in solar cell

Jan. 25, 2013 — The sun's energy is virtually limitless, but harnessing its electricity with today's single-crystal silicon solar cells is extremely expensive -- 10 times pricier than coal, according to some estimates. Organic solar cells -- polymer solar cells that use organic materials to absorb light and convert it into electricity -- could be a solution, but current designs suffer because polymers have less-than-optimal electrical properties.

Researchers at Northwestern University have now developed a new design for organic solar cells that could lead to more efficient, less expensive solar power. Instead of attempting to increase efficiency by altering the thickness of the solar cell's polymer layer -- a tactic that has preciously garnered mixed results -- the researchers sought to design the geometric pattern of the scattering layer to maximize the amount of time light remained trapped within the cell.

Using a mathematical search algorithm based on natural evolution, the researchers pinpointed a specific geometrical pattern that is optimal for capturing and holding light in thin-cell organic solar cells.

The resulting design exhibited a three-fold increase over the Yablonovitch Limit, a thermodynamic limit developed in the 1980s that statistically describes how long a photon can be trapped in a semiconductor.

In the newly designed organic solar cell, light first enters a 100-nanometer-thick "scattering layer," a geometrically-patterned dielectric layer designed to maximize the amount of light transmitted into the cell. The light is then transmitted to the active layer, where it is converted into electricity.

"We wanted to determine the geometry for the scattering layer that would give us optimal performance," said Cheng Sun, assistant professor of mechanical engineering in Northwestern's McCormick School of Engineering and Applied Science and co-author of the paper. "But with so many possibilities, it's difficult to know where to start, so we looked to laws of natural selection to guide us."

The researchers employed a genetic algorithm, a search process that mimics the process of natural evolution, explained Wei Chen, Wilson-Cook Professor in Engineering Design and professor of mechanical engineering at McCormick and co-investigator of the research.

"Due to the highly nonlinear and irregular behavior of the system, you must use an intelligent approach to find the optimal solution," Chen said. "Our approach is based on the biologically evolutionary process of survival of the fittest."

The researchers began with dozens of random design elements, then "mated" and analyzed their offspring to determine their particular light-trapping performance. This process was carried out over more than 20 generations and also accounted for evolutionary principles of crossover and genetic mutation.

The resulting pattern will be fabricated with partners at Argonne National Laboratory.

Also co-authoring the paper were co-lead authors Chen Wang and Shuangcheng Yu, graduate students in McCormick's Department of Mechanical Engineering.


Journal Reference:

  1. Chen Wang, Shuangcheng Yu, Wei Chen, Cheng Sun. Highly Efficient Light-Trapping Structure Design Inspired By Natural Evolution. Scientific Reports, 2013; 3 DOI: 10.1038/srep01025

Note: If no author is given, the source is cited instead.

The source of this article can be found at: cell-design.html' target='_blank'>http://www.mccormick.northwestern.edu/news/articles/2013/01/evolution-inspires-more-efficient-solar-cell-design.html

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners