Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Determining biocontainers' carbon footprint

Many efforts to reduce the environmental impacts associated with commercial horticulture production have failed to influence the general public. For example, one recent study showed that the use of organic fertilizers offered no significant marketing advantage to producers of floral crops. In contrast to the promotion of organic products, the use of biocontainers (plant material-based, biodegradable pots) as alternatives to conventional plastic containers has been shown to resonate with many consumers.

The authors of a new study say that, despite the positive public perception of biocontainers' environmental benefits as alternatives to petroleum-based plastic pots, the impact of biocontainers on commercial greenhouse sustainability has not been thoroughly evaluated. The researchers offer a first look at the overall sustainability of biocontainers as part of a greenhouse production system. "Our work adopted a grower's perspective and focuses on the environmental impacts of container use during the plant production phase," explained Andrew Koeser, corresponding author of the study published in HortScience (March 2014).

The team's "cradle-to-gate" study compared the secondary impacts that occur during the greenhouse production of plants grown in biocontainers. The life cycle assessment data for the study was obtained from interviews, published literature, propriety data sources, direct metering at the greenhouse facility, and original findings from a series of university greenhouse experiments. The authors noted that their work also offers an initial screening of commercially available biocontainers that could be used in future life cycle assessments that focus on manufacturing inputs and environmental impacts.

A conventional plastic container and nine types of biocontainers (bioplastic, coir, manure, peat, bioplastic sleeve, slotted rice hull, solid rice hull, straw, and wood fiber) were included in the life cycle assessments for greenhouse petunia production. The impacts were presented in terms of contribution to the carbon footprint or global warming potential (GWP) of a single finished plant in a 10-cm-diameter container.

Results showed that a traditional plastic container accounts for approximately 16% of overall carbon dioxide equivalents emissions during petunia production. However, electrical consumption for supplemental lighting and irrigation during plug production proved to be the leading source of CO2e emissions (more than 47%) in the model system. Differences in GWP when considering secondary impacts associated with the various biocontainers were minor, especially when compared with the other elements of production.

The researchers said that their results demonstrate that biocontainers could potentially be as sustainable as, or more sustainable, than plastic pots "once pot manufacturing and end-of-life data are considered." They emphasized that use of more efficient supplemental lighting sources may ultimately have the greatest impact on overall global warming potential for the production system assessed.

"Although biocontainers have been linked to reduced performance in plant growth, filling speed, shipping success, and irrigation demand trials, these differences do not have a dramatic effect on production sustainability from a global warming potential perspective," said the authors. "These results should be encouraging for growers and manufacturers looking to increase sustainability through the use and development of biocontainers."

Story Source:

The above story is based on materials provided by American Society for Horticultural Science. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners