Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

For drug makers, new 3-D control opens wealth of options

Feb. 7, 2013 — A team of scientists anchored at Yale University has demonstrated a new, highly versatile approach for quickly assembling drug-like compounds, establishing a broad new route to drug discovery and medical treatment. They report their results in the journal Science on Feb 8.

Drug molecules interact with their targets, such as proteins or enzymes, by attaching to them in a way that neutralizes the target's undesirable effects in the body. This is sometimes called the "lock-and-key" method. The new approach offers scientists far greater control over the three-dimensional structure of a key class of molecular compounds, making it easier to fashion drug molecules that fit their targets in the right way.

"Now we've got a lot more control over the shape and orientation of this class of drug compounds, and this essentially gives us greater flexibility in creating effective drugs," said Jonathan Ellman, the Yale chemist who led the experiment.

The research reported in Science revolves around piperidines, a class of organic compounds widely used in pharmaceuticals, including the familiar drugs quinine, morphine, oxycodone, Plavix, Cialis, and Aricept. Piperidines are core structures, or scaffolds, upon which molecular fragments -- parts of the drug molecule -- can be displayed for binding to a drug's targets. The scientists have shown a way to generate different piperidine derivatives by varying acid strength.

"Our research allows us to make new piperidines easily," Ellman said. "The approach has biomedical relevance because the scaffold upon which the fragments are displayed is present in many of the most important drugs."

The research is being published without patent constraints and could be used by drug developers immediately, said Ellman, who is the Eugene Higgins Professor of Chemistry and professor of pharmacology. "I believe that this is the most effective approach for rapidly translating this work into new drugs," he said.


Journal Reference:

  1. S. Duttwyler, S. Chen, M. K. Takase, K. B. Wiberg, R. G. Bergman, J. A. Ellman. Proton Donor Acidity Controls Selectivity in Nonaromatic Nitrogen Heterocycle Synthesis. Science, 2013; 339 (6120): 678 DOI: 10.1126/science.1230704

Note: If no author is given, the source is cited instead.

The source of this article can be found at: http://www.eurekalert.org/pub_releases/2013-02/yu-fdm020713.php

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners