Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Discovery of cellular snooze button advances cancer, biofuel research

The discovery of a cellular snooze button has allowed a team of Michigan State University scientists to potentially improve biofuel production and offer insight on the early stages of cancer.

The discovery that the protein CHT7 is a likely repressor of cellular quiescence, or resting state, is published in the current issue of the Proceedings of the National Academy of Sciences. This cellular switch, which influences algae's growth and oil production, also wields control of cellular growth -- and tumor growth -- in humans.

Christoph Benning, MSU professor of biochemistry and molecular biology, and his colleagues unearthed the protein's potential while seeking ways to improve algae's capacity as a biofuel. Its application in cancer research, however, was a surprise finding that is leading Benning's lab in a new direction.

"Algae provide us with model organisms that rival, or possibly exceed, traditional yeast models," Benning said. "It's quite difficult to grow many types of human cells in test tubes. However, we can readily grow, manipulate and study algae, which have the genomic repertoire that make them relevant in their capacity to drive advances in human medicine."

The discovery was made while tackling the conundrum of algae's vexing inverse relationship with growing mass versus producing oil. When algae are awake, they grow; when they're asleep, they produce oil.

"Producing oil is part of the cells' survival strategy when it's under stress," said Chia-Hong Tsai, doctoral candidate with MSU's Department of Energy Plant Research Laboratory and Department of Plant Biology and co-author. "They go into quiescence to conserve energy and nutrients. That's when they produce the equivalent of vegetable oil. But to convert them into truly viable biofuel producers, we need them to grow and produce oil simultaneously."

The secret for making this happen was CHT7 -- the gatekeeper that cues cells to wake up or fall asleep. By engineering this protein, Benning's team might one day develop an organism that can't figure out how to doze and is always active. For biofuels, this would remove a major hurdle and gives scientists a way to potentially produce high amounts of oil and biomass.

In terms of human medicine, this discovery gives scientists a promising new model to study tumor suppression and growth. Because quiescent cells are found in many plants and animals, it's a model that can provide important insights into the regulation of cellular behavior in organisms, such as us humans, in ways that traditional yeast models simply can't replicate.

"For cancer research, it's a new paradigm," Benning said. "The switch that tells an organism to grow, or possibly, go rogue and grow uncontrollably -- that's exactly what we want to understand. That is the first step of tumor growth."

Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners