Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Changing the conversation: Polymers disrupt bacterial communication

Nov. 11, 2013 — Artificial materials based on simple synthetic polymers can disrupt the way in which bacteria communicate with each other, a study led by scientists at The University of Nottingham has shown.

The findings, published in the journal Nature Chemistry, could further our knowledge on how better to control and exploit bacteria in the future and will have implications for work in the emerging field of synthetic biology.

Professor Cameron Alexander, in the University's School of Pharmacy, led the study. He said: "This is an exciting and unexpected finding for us and comes as a result of research which was very much curiosity driven.

"It gives us more information about how to design artificial cells and to produce materials that will interact with microorganisms and control their behaviour, with a whole host of potential applications including drug discovery and energy production."

The study, which also involved scientists from the universities of Birmingham and Newcastle, was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Biotechnology and Biological Sciences Research Council (BBSRC) and The University of Nottingham.

As part of their research into the development of artificial cells and programmable bacterial coatings, the team found that polymers -- long-chain molecules -- that were able to arrange bacteria into clustered communities were, surprisingly, encouraging these bacteria to actively 'talk' to each other. This communication occurred by quorum sensing (QS), a way in which bacteria signal to each other, and coordinate response to environment. Quorum sensing also controls the way in which bacteria release certain types of molecules -- for example as a defence mechanism or as tools for infection.

This finding opens up the possibility to influence microbial behaviour by controlling their ability to form productive communities. This can be exploited to prevent the release of toxins during the spread of infection or, alternatively, the production of useful molecules which can act as drugs, food source or biofuels.

The researchers used the bioluminescent marine bacterium Vibrio harveyi, as it allows them to easily track the changes in the bacteria's behaviour by measuring the pattern and intensity of the natural light produced by the organism.

Building on some intriguing initial results, the team of pharmacists, microbiologists chemists and computer scientists were also able to produce computational models predicting and explaining the behaviour of the microbial communities, which were crucial to deduct simple design principles for the programmable interaction of bacteria and polymers.

Overall, this research offers new understanding of bacterial community behaviour and will have implications in the design of materials as antimicrobials, for bioprocessing, biocomputation and, more generally, synthetic biology.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners