Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond
to treat, Therapeutic

Related Stories

Artificial spleen to treat bloodstream infections: Sepsis therapeutic device under development

Mar. 30, 2013 — The Wyss Institute for Biologically Inspired Engineering at Harvard University announced today that it was awarded a $9.25 million contract from the Defense Advanced Research Projects Agency (DARPA) to further advance a blood-cleansing technology developed at the Institute with prior DARPA support, and help accelerate its translation to humans as a new type of sepsis therapy.

The device will be used to treat bloodstream infections that are the leading cause of death in critically ill patients and soldiers injured in combat.

To rapidly cleanse the blood of pathogens, the patient's blood is mixed with magnetic nanobeads coated with a genetically engineered version of a human blood 'opsonin' protein that binds to a wide variety of bacteria, fungi, viruses, parasites, and toxins. It is then flowed through microchannels in the device where magnetic forces pull out the bead-bound pathogens without removing human blood cells, proteins, fluids, or electrolytes -- much like a human spleen does. The cleansed blood then flows back to the patient.

"In just a few years we have been able to develop a suite of new technologies, and to integrate them to create a powerful new device that could potentially transform the way we treat sepsis," said Wyss founding director and project leader, Don Ingber, M.D., Ph.D. "The continued support from DARPA enables us to advance our device manufacturing capabilities and to obtain validation in large animal models, which is precisely what is required to enable this technology to be moved towards testing in humans."

The team will work to develop manufacturing and integration strategies for its core pathogen-binding opsonin and Spleen-on-a-Chip fluidic separation technologies, as well as a novel coating technology called "SLIPS," which is a super-hydrophobic coating inspired from the slippery surface of a pitcher plant that repels nearly any material it contacts. By coating the inner surface of the channels of the device with SLIPS, blood cleansing can be carried out without the need for anticoagulants to prevent blood clotting.

In addition to Ingber, the multidisciplinary team behind this effort includes Wyss core faculty and Harvard School of Engineering and Applied Science faculty member Joanna Aizenberg, Ph.D., who developed the SLIPS technology; Wyss senior staff member Michael Super, Ph.D., who engineered the human opsonin protein; and Mark Puder, M.D., Ph.D., Associate Professor of Pediatric Surgery at Boston Children's Hospital and Harvard Medical School who will be assisting with animal studies.


Note: If no author is given, the source is cited instead.

The source of this article can be found at: http://wyss.harvard.edu/viewpressrelease/108/

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners