Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Dirty pool: Soil's large carbon stores could be freed by increased CO2, plant growth

An increase in human-made carbon dioxide in the atmosphere could initiate a chain reaction between plants and microorganisms that would unsettle one of the largest carbon reservoirs on the planet -- soil.

Researchers based at Princeton University report in the journal Nature Climate-Change'>Climate Change that the carbon in soil -- which contains twice the amount of carbon in all plants and Earth's atmosphere combined -- could become increasingly volatile as people add more carbon dioxide to the atmosphere, largely because of increased plant growth. The researchers developed the first computer model to show at a global scale the complex interaction between carbon, plants and soil, which includes numerous bacteria, fungi, minerals and carbon compounds that respond in complex ways to temperature, moisture and the carbon that plants contribute to soil.

Although a greenhouse gas and pollutant, carbon dioxide also supports plant growth. As trees and other vegetation flourish in a carbon dioxide-rich future, their roots could stimulate microbial activity in soil that in turn accelerates the decomposition of soil carbon and its release into the atmosphere as carbon dioxide, the researchers found.

This effect counters current key projections regarding Earth's future carbon cycle, particularly that greater plant growth could offset carbon dioxide emissions as flora take up more of the gas, said first author Benjamin Sulman, who conducted the modeling work as a postdoctoral researcher at the Princeton Environmental Institute.

"You should not count on getting more carbon storage in the soil just because tree growth is increasing," said Sulman, who is now a postdoctoral researcher at Indiana University.

On the other hand, microbial activity initiated by root growth could lock carbon onto mineral particles and protect it from decomposition, which would increase long-term storage of carbon in soils, the researchers report.

Whether carbon emissions from soil rise or fall, the researchers' model depicts an intricate soil-carbon system that contrasts starkly with existing models that portray soil as a simple carbon repository, Sulman said. An oversimplified perception of the soil carbon cycle has left scientists with a glaring uncertainty as to whether soil would help mitigate future carbon dioxide levels -- or make them worse, Sulman said.

"The goal was to take that very simple model and add some of the most important missing processes," Sulman said. "The main interactions between roots and soil are important and shouldn't be ignored. Root growth and activity are such important drivers of what goes on in the soil, and knowing what the roots are doing could be an important part of understanding what the soil will be doing."

The researchers' soil-carbon cycle model has been integrated into the global land model used for climate simulations by the National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL) located on Princeton's Forrestal Campus.

Story Source:

The above story is based on materials provided by Princeton University. The original article was written by Morgan Kelly. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners