Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven

Swedish and Chinese researchers show how a unique nano-alloy composed of palladium nano-islands embedded in tungsten nanoparticles creates a new type of catalysts for highly efficient oxygen reduction, the most important reaction in hydrogen fuel cells. Their results are published in the scientific journal Nature Communications.

The world's rapidly growing demand for energy and the requirement of sustainable energy production calls for an urgent change in today's fossil fuel based energy system. Research groups worldwide work intensively to develop novel advanced energy conversion and storage systems with high efficiency, low cost and environmental compatibility.

Fuel-Cell'>Fuel cell systems represent a promising alternative for low carbon emission energy production. Traditional fuel cells are however limited by the need of efficient catalysts to drive the chemical reactions involved in the Fuel-Cell'>fuel cell. Historically, platinum and its alloys have frequently been used as anodic and cathodic catalysts in fuel cells, but the high cost of platinum, due to its low abundance, motivates researchers to find efficient catalysts based on earth-abundant elements.

"In our study we report a unique novel alloy with a palladium (Pd) and tungsten (W) ratio of only one to eight, which still has similar efficiency as a pure platinum catalyst. Considering the cost, it would be 40 times lower," says Thomas Wågberg, Senior lecturer at Department of Physics, Umeå University.

The explanation for the very high efficiency is the unique morphology of the alloy. It is neither a homogeneous alloy, nor a fully segregated two-phase system, but rather something in between.

By advanced experimental and theoretical investigations, the researchers show that the alloy is composed of metallic Pd-islands embedded in the Pd-W alloy. The size of the islands are about one nanometer in diameter and are composed of 10-20 atoms that are segregated to the surface. The unique environment around the Pd-islands give rise to special effects that all together turn the islands into highly efficient catalytic hot-spots for oxygen reduction.

To stabilize the nanoparticles in practical applications, they are anchored on ordered mesoporous carbon. The anchoring keep the nanoparticles stable over long time by hindering them from fusing together in the Fuel-Cell'>fuel cell tests.

"The unique formation of the material is based on a synthesis method, which can be performed in an ordinary kitchen micro-wave oven purchased at the local supermarket. If we were not using argon as protective inert gas, it would be fully possible to synthesize this advanced catalyst in my own kitchen! ," says Thomas Wågberg.

Wågberg and his fellow researchers have recently received funding from the Kempe Foundation to buy a more advanced micro-wave oven, and therefore they will be able to run more advanced experiments to fine tune some of the catalyst properties.

Story Source:

The above story is based on materials provided by Umea University. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners