Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Radioactivity muddles alphabet of DNA

Dec. 17, 2013 — Curtin University researchers have shown natural radioactivity within DNA can alter chemical compounds, providing a new pathway for genetic mutation.

The research, recently published in Biochimica et Biophysica Acta-General Subjects, for the first time looked at natural radioactivity within human DNA on the atomic-scale.

While radioactivity occurs naturally in our bodies as well as in every living organism across the planet, it was never before thought to affect our DNA in such a direct way.

Using high-performance computers, the research team from Curtin and Los Alamos National Laboratory were able to show radioactivity could alter molecular structures which encode genetic information, creating new molecules that do not belong to the four-letter alphabet of DNA.

Professor Nigel Marks from Curtin's Discipline of Physics and Astronomy and Curtin's Nanochemistry Research Institute said the new molecules may well generate mutations by confusing the replication mechanisms in DNA.

"This work takes an entirely new direction on research into natural radioactivity in biology and raises important questions about genetic mutation," Professor Marks said.

"We have discovered a subtle process that could easily be overlooked by the standard cell repair mechanisms in the body, potentially creating a new pathway for mutations to occur."

Professor Marks said the work was both exciting and unexpected, emerging as a spin-off from an Australian Research Council funded project on nuclear waste.

"As part of the project between Curtin and Los Alamos we developed a suite of computational tools to examine deliberate radioactivity in crystalline solids, only to later realise that the same methods could be applied to natural radioactivity in molecules," he said.

"This direction was an unplanned outcome of our research program -- just the way blue skies research should be."

The natural radioactivity in focus involved the decay of carbon atoms, Carbon-14, turning into nitrogen atoms, Nitrogen-14.

Professor Marks said this was one of the most abundant forms of radioactive decay occurring in Biological-Systems'>biological systems. Over a human lifetime, around 50 billion Carbon-14 decays occur within our DNA.

"While it is still not obvious how DNA replication is affected by the presence of chemical compounds that are different to the four-letter alphabet of DNA, it is quite remarkable to consider that Carbon-14 could be a source of genetic mutation that would be impossible to avoid due to the universal presence of radiocarbon in the environment," Professor Marks said.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners