Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Chernobyl's birds adapting to ionizing radiation

Birds in the exclusion zone around Chernobyl are adapting to -- and may even be benefiting from -- long-term exposure to radiation, ecologists have found. The study, published in the British Ecological Society's journal Functional Ecology, is the first evidence that wild animals adapt to ionizing radiation, and the first to show that birds which produce most pheomelanin, a pigment in feathers, have greatest problems coping with radiation exposure.

According to lead author Dr Ismael Galván of the Spanish National Research Council (CSIC): "Previous studies of wildlife at Chernobyl showed that chronic radiation exposure depleted antioxidants and increased oxidative damage. We found the opposite -- that antioxidant levels increased and oxidative stress decreased with increasing background radiation."

The Chernobyl disaster, which occurred on April 26 1986, had catastrophic environmental consequences. However, because it remains heavily contaminated by radiation, the region represents an accidental ecological experiment to study the effects of ionizing radiation on wild animals.

Laboratory experiments have shown that humans and other animals can adapt to radiation, and that prolonged exposure to low doses of radiation increases organisms' resistance to larger, subsequent doses. This adaptation, however, has never been seen outside the laboratory in wild populations.

Previous studies of the level of antioxidants and oxidative damage at Chernobyl are limited to humans, two bird species and one species of fish. Because different species vary widely in their susceptibility to radiation, this limited data has made it difficult to study how wild animals adapt to radiation exposure.

The researchers, including ecologists who have worked around Chernobyl since the 1990s, used mist nets to capture 152 birds from 16 different species at eight sites inside and close to the Chernobyl Exclusion Zone. They measured background radiation levels at each site, and took feather and blood samples before releasing the birds.

They then measured levels of glutathione (a key antioxidant), oxidative stress and DNA damage in the blood samples, and levels of melanin pigments in the feathers. Melanins are the most common animal pigments but because the production of pheomelanin (one type of melanin, the other type being eumelanin) uses up antioxidants, animals that produce the most pheomelanins are more susceptible to the effects of ionizing radiation.

As well as taking samples from 16 different bird species, the team used a novel approach to analyze their results. The method takes better account of how closely related different species are. This is important because some species are more susceptible to radiation than others. The method focuses the analysis on individual birds instead of species averages, making it a much more sensitive way to analyze biochemical responses to radiation.

The results revealed that with increasing background radiation, the birds' body condition and glutathione levels increased and oxidative stress and DNA damage decreased. They also showed that birds which produce larger amounts of pheomelanin and lower amounts of eumelanin pay a cost in terms of poorer body condition, decreased glutathione and increased oxidative stress and DNA damage.

"The findings are important because they tell us more about the different species' ability to adapt to environmental challenges such as Chernobyl and Fukushima," said Galván.

Levels of radiation in the study area ranged from 0.02 to 92.90 micro Sieverts per hour. The 16 bird species surveyed were: red-backed shrike; great tit; barn swallow; wood warbler; blackcap; whitethroat; barred warbler; tree pipit; chaffinch; hawfinch; mistle thrush; song thrush; blackbird; black redstart; robin and thrush nightingale.

Ionizing radiation damages cells by producing very reactive compounds known as free radicals. The body protects itself against free radicals using antioxidants, but if the level of antioxidants is too low, radiation produces oxidative stress and genetic damage, which leads to aging and death.

Ismael Galván, Andrea Bonisoli-Alquati, Shanna Jenkinson, Ghanem Ghanem, Kazumasa Wakamatsu, Timothy A. Mousseau and Anders P. Møller (2014). "Chronic exposure to low-dose radiation at Chernobyl favors adaptation to oxidative stress," is published in Functional Ecology on Friday 25 April 2014.

Story Source:

The above story is based on materials provided by British Ecological Society (BES). Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners