Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Controlled emission and spatial splitting of electron pairs demonstrated

In quantum optics, generating entangled and spatially separated photon pairs (e.g. for quantum cryptography) is already a reality. So far, it has, however, not been possible to demonstrate an analogous generation and spatial separation of entangled electron pairs in solids. Physicists from Leibniz University Hannover and from the Physikalisch-Technische Bundesanstalt (PTB) have now taken a decisive step in this direction. They have demonstrated for the first time the on-demand emission of electron pairs from a semiconductor quantum dot and verified their subsequent splitting into two separate conductors. Their results have been published in the current online issue of the journal Nature Nanotechnology.

A precise control and manipulation of quantum-mechanical states could pave the way for promising applications such as quantum computers and quantum cryptography. In quantum optics, such experiments have already been performed for some time. This, for example, allows the controlled generation of pairs of entangled, but spatially separated photons, which are of essential importance for quantum cryptography. An analogous generation and spatial separation of entangled electrons in solids would be of fundamental importance for future applications, but could not be demonstrated yet. The results from Hannover and Braunschweig are a decisive step in this direction.

As an electron source, the physicists from Leibniz University Hannover and from PTB used so-called semiconductor single-electron pumps. Controlled by voltage pulses, these devices emit a defined number of electrons. The single-electron pump was operated in such a way that it released exactly one electron pair per pulse into a semiconducting channel. A semitransparent electronic barrier divides the channel into two electrically distinct areas. A correlation measurement then recorded whether the electron pairs traversed the barrier, or whether they were reflected or split by the barrier. It could be shown that for suitable parameters, more than 90 % of the electron pairs were split and spatially separated by the barrier. This is an important step towards the envisioned generation and separation of entangled electron pairs in semiconductor components.

Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt (PTB). Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners