Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond
Atomic, Catalysts

Related Stories

Watching catalysts at work at the atomic scale

July 25, 2013Developing materials with novel catalytic properties is one of the most important tasks in energy research. It is especially important to understand the dynamic processes involved in catalysis at the atomic scale, such as the formation and breaking of Chemical-Bonds'>chemical bonds as well as ligand exchange mechanism. Scientists of Helmholtz-Zentrum Berlin (HZB) and collaborators have now combined the spectroscopic method "RIXS" with so-called ab initio theory in order to describe these processes in detail for a model organometallic catalyst of great interest to catalysis research -- the iron carbonyl complex.

The team publishes its results today in the scientific journal Angewandte Chemie International Edition.

Iron carbonyl complexes are used in a large number of chemical reactions and industrial processes, such as light-induced water reduction or catalytic carbon monoxide removal from exhaust gases. Their catalytic activity is a result of rapid formation and subsequent breaking of Chemical-Bonds'>chemical bonds between the metal centre and the carbonyl ligands. "It is essential for us to be able to determine the strength of orbital mixing at the chemical bond by directly probing the metal centres and the ligands," says Prof. Dr. Emad Flear Aziz, head of the HZB junior research group 'Structure and Dynamics of Functional Materials'. Until recently, has not been possible to apply these studies in homogeneous catalysis which take place in solution. The development of the new "LiXEdrom" experimental station, here at HZB, which is equipped with the micro-jet technique has enabled RIXS (resonant inelastic X-ray scattering) experiments on functional materials under in-situ conditions.

In collaboration with scientists from various universities, Aziz's team has now successfully studied both the metal and the ligands under real conditions in which this particular catalysis takes place (in situ), using RIXS spectroscopy at HZB's electron storage ring BESSY II. They discovered a very strong orbital mixing between the metal and its ligands, which led to a weakening and elongation of the chemical bond during RIXS excitation. The experimental results were supported by theoretical ab initio methods by the University of Rostock. "With this new method combination, we have gained fundamental insights into the electronic structure of iron carbonyl complexes under catalysis-relevant conditions," Aziz reports. "Our approach can help provide a better understanding of reaction dynamics and metal-ligand-solvent interactions on very short time scales. This leads to better control of catalytic properties -- and holds great potential for the production of novel catalytically active materials."


Journal Reference:

  1. Edlira Suljoti, Raul Garcia-Diez, Sergey I. Bokarev, Kathrin M. Lange, Roland Schoch, Brian Dierker, Marcus Dantz, Kenji Yamamoto, Nicholas Engel, Kaan Atak, Oliver Kühn, Matthias Bauer, Jan-Erik Rubensson, Emad F. Aziz. Direct Observation of Molecular Orbital Mixing in a Solvated Organometallic Complex. Angewandte Chemie International Edition, 2013; DOI: 10.1002/anie.201303310

Note: If no author is given, the source is cited instead.

The source of this article can be found at: http://www.helmholtz-berlin.de/pubbin/news_seite%3Fnid%3D13766%26amp%3Bsprache%3Den%26amp%3Btypoid%3D" rel="nofollow

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners