Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond
Water, Water, Water

Related Stories

Motorized microscopic matchsticks move in water with sense of direction

Sep. 10, 2013 — Chemists, physicists and computer scientists at the University of Warwick have come together to devise a new powerful and very versatile way of controlling the speed and direction of motion of microscopic structures in water using what they have dubbed chemically 'motorised microscopic matchsticks'.

Before now most research seeking to influence the direction of motion of microscopic components have had to use outside influences such as a magnetic field or the application of light. The University of Warwick team have now found a way to do it by simply adding a chemical in a specific spot and then watching the microscopic matchstick particles move towards it, a phenomenon known as chemotaxis.

The research published in the journal Materials Horizons (RSC) in a paper entitled "Chemotaxis of catalytic silica-manganese oxide "matchstick" particles" found that by adding a small amount of a catalyst to the head of a set microscopic rods, they could then cause the rods to be propelled towards the location of an appropriate 'chemical fuel' that was then added to a mixture.

For the purposes of this experiment the researchers placed silica-manganese oxide 'heads' on the matchstick material and introduced hydrogen peroxide as the chemical fuel in one particular place.

They placed the 'matchsticks' in a mixture alongside ordinary polymer microspheres.

When the hydrogen peroxide was added the microspheres continued to move in the direction of convection currents or under Brownian motion but the matchsticks were clearly rapidly propelled towards the chemical gradient where the hydrogen peroxide could be found.

The reaction was so strong that more than half of the matchstick particles did not reverse their orientation once over their 90 seconds of travel towards the hydrogen peroxide -- even though they were contending with significant convection and Brownian rotation.

University of Warwick research chemical engineer Dr Stefan Bon who led the research said:

"We choose high aspect ratio rod-like particles as they are a favourable geometry for chemotactic swimmers, as seen for example in nature in the shapes of certain motile organisms"

"We placed the 'engine' that drives the self-propulsion as a matchstick head on the rods because having the engine in the 'head' of the rod helps us align the rod along the direction of travel, would also show the asymmetry perpendicular to the direction of self-propulsion, and at the same time it maintains rotational symmetry parallel to the plane of motion.

"Our approach is very versatile and should allow for future fabrication of micro-components of added complexity.

"The ability to direct motion of these colloidal structures can form a platform for advances in supracolloidal science, the self-assembly of small objects.

"It may even provide some insight into how rod shapes were selected for self-propelled microscopic shapes in the natural world."

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners