Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

'Ultraselective' process to make valuable chemical from biomass

May 28, 2013Chemical engineering researchers Wei Fan, Paul Dauenhauer and colleagues at the University of Massachusetts Amherst report this week that they've discovered a new chemical process to make p-xylene, an important ingredient of common plastics, at 90 percent yield from lignocellulosic biomass, the highest yield achieved to date. Details are in the current issue of Green Chemistry.

As Dauenhauer explains, the chemical industry currently produces p-xylene from more expensive petroleum, while the new process will make the same chemical from lower-cost, renewable biomass. He and colleagues call the process "ultraselective" because of its ability to achieve 90 percent selectivity for the desired product. "The biomass-derived p-xylene can be mixed with petroleum-based plastics, and consumers will not be able to tell the difference. But manufacturers and chemical companies will be able to operate more sustainably and at lower cost in the future because of this discovery," he adds.

Consumers already know the plastics made from this new process by the triangular recycling label "#1" on plastic containers. Xylene chemicals are used to produce a plastic called PET (polyethylene terephthalate), which is currently used in many products including soda bottles, food packaging, synthetic fibers for clothing and even automotive parts, Dauenhauer says.

The UMass Amherst team's discovery reveals the impact of nano-structured catalyst design on renewable chemical processes. Led by Fan, they examined a large number of nano-porous catalytic materials, including zeolites, investigating their capability for producing p-xylene. A specific material identified as 'zeolite beta' was found to be optimal. "We discovered that the performance of the biomass reaction was strongly affected by the nanostructure of the catalyst, which we were able to engineer and achieve 90 percent yield," Fan says.

Besides Dauenhauer and Fan, the research team includes Chun-Chih Chang, Sara Green and C. Luke Williams, doctoral students in chemical engineering at UMass Amherst.


Journal Reference:

  1. Wei Fan, Paul Jakob Dauenhauer, Chun-Chih Chang, Sara K Green, C Luke Williams. Ultra-Selective Cycloaddition of Dimethylfuran for Renewable p-Xylene with H-BEA.. Green Chemistry, 2013; DOI: 10.1039/C3GC40740C

Note: If no author is given, the source is cited instead.

The source of this article can be found at: chemical-engineers-discover-ultraselective-process-to-make-valuable-chemical-from-biomass' target='_blank'>http://www.newswise.com/articles/chemical-engineers-discover-ultraselective-process-to-make-valuable-chemical-from-biomass

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners