Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Artificial membranes on silicon

Artificial membranes mimicking those found in living organisms have many potential applications ranging from detecting bacterial contaminants in food to toxic pollution in the environment to dangerous diseases in people. Now a group of scientists in Chile has developed a way to create these delicate, ultra-thin constructs through a "dry" process, by evaporating two commercial, off-the-shelf chemicals onto silicon surfaces.

Described in The Journal of Chemical Physics, from AIP Publishing, this is the first time anyone has ever made an artificial membrane without mixing liquid solvents together. And because the new process creates membranes on silicon surfaces, it is a significant step toward creating bio-silicon interfaces, where biological "sensor" molecules can be printed onto cheap silicon chip holding integrated electronic circuits.

"Our idea is to create a biosensor that can transmit electrical signals through the membrane," said María José Retamal, a Ph.D. student at Pontificia Universidad Católica de Chile and first author of the paper.

Membranes for Technology, as for Life

The importance of lipid membranes to life is hard to overstate. They are a principal component of the cell, as fundamental as DNA or proteins, and all known organisms on Earth, from the bittiest bacteria to the biggest blue whales, use membranes in a multitude of ways.

They separate distinct spaces within cells and define walls between neighboring cells -- a functional compartmentalization that serves many physiological processes, protecting genetic material, regulating what comes in and out of cells, and maintaining the function of separate organs.

Synthetic membranes that mimic nature are of great interest to science because they offer the possibility of containing membrane proteins -- biological molecules that could be used for detecting toxins, diseases and many other biosensing applications.

Retamal and her colleagues created the first artificial membrane without using solvents on a silicon support base. They chose silicon because of its low cost, wide availability and because its "hydrophobicity" (how much it repels water) can be controlled chemically, allowing them to build membranes on top.

Next they evaporated a chemical known as chitosan onto the silicon. Chitosan is derived from chitin, a sugar found in the shells of certain crustaceans, like lobsters or shrimp. Whole bags of the powder can be bought from chemical companies worldwide. They chose this ingredient for its ability to form a moisturizing matrix. It is insoluble in water, but chitosan is porous, so it is capable of retaining water.

Finally they evaporated a phospholipid molecule known as dipalmitoylphosphatidylcholine (DPPC) onto the chitosan-covered silicon substrate and showed that it formed a stable "bilayer," the classic form of a membrane. Spectroscopy showed that these artificial membranes were stable over a wide range of temperatures.

More work is needed to standardize the process by which proteins are to be inserted in the membranes, to define the mechanism by which an electrical signal would be transmitted when a protein binds its target and to calibrate how that signal is detected by the underlying circuitry, Retamal said.

"This is a powerful tool," she added. "The idea is that it will be used by the rest of the scientific community in order to improve existing techniques."

Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners