All About Chemistry... 2011 and beyond

Related Stories

Complementary light switchable proteins and superresolution reveal moving protein complexes in live cells at single molecule level

Cells are restless. They move during embryogenesis, tissue repair, regeneration, chemotaxis. Even in disease, tumor metastasis, cells get around. To do this, they have to keep reorganizing their cytoskeleton, removing pieces from one end of a microtubule and adding them to the front, like a railroad with a limited supply of tracks. The EB family of proteins helps regulate this process and can act as a scaffold for other proteins involved in pushing the microtubule chain forward.

Still, how these EB proteins function in space and time has remained a mystery. Now Peng Xia and Xuebiao Yao of the Hefei National Laboratory for Physical Sciences at the Nanoscale and University of Science and Technology of China, and their colleagues, describe in the December 11 issue of Molecular Biology of the Cell (MBoC). how they managed to visualize protein interactions at nanometer spatial resolution in live cells. Yao will also present at the 2014 ASCB/IFCB meeting in Philadelphia on December 8 at 1:30 pm in the ASCB Learning Center. The new method uses photoactivatable complementary fluorescent proteins (PACF) to observe and quantify protein-protein interactions in live cells at the single molecule level.

Through clever biochemistry combined with superresolution imaging techniques similar to those that won this year's Nobel Prize in Chemistry, Yao and Xia introduced two EB proteins into cells, one with half of a photoactivatable green fluorescent protein (PAGFP), and one with the other half of PAGFP. These complementary PAGFP pieces will only fluoresce if the EB proteins are in a complex together and photoactivated. They can also be switched off with a different wavelength of light. By activating and then bleaching subsets of EB molecules, the researchers could assemble super-resolution images of protein complexes.

Yao and Xia say their technique has already revealed a surprisingly critical role for a previously uncharacterized EB1 linker region in tracking microtubule plus-ends in live cells. The technique offered precise localization of dynamic microtubule plus-end hub protein EB1 dimers, and their distinct distributions at the leading edge and cell body of migrating cells, the researchers report. And their technique can be applied to the study of other protein complexes in unprecedented detail.

Story Source:

The above story is based on materials provided by American Society for Cell Biology (ASCB). Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners