Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond
Ocean, Ocean

Related Stories

Plankton adjusts to changing ocean temperatures

Mar. 8, 2013 — Imagine trying to swim through a pool of honey. Because of their small size, this is what swimming in water is like for tiny marine plankton. So, it was often assumed they would be easy prey, especially in the dense viscosity of colder waters, but that is not necessarily so.

Texas Tech Associate Professor and Whitacre Endowed Chair in Mechanical Engineering Jian Sheng, along with biologists Brad Gemmell and Edward Buskey from the University of Texas Marine Science Institute, have discovered new information that explains how these tiny organisms overcome this disadvantage.

Their paper, titled "A compensatory escape mechanism at low Reynolds number" was published in the current issue of Proceedings of the National Academy of Sciences.

"The purpose of the study was in trying to determine the effects of Climate-Change'>climate change at the very base of the food chain," Sheng said.

As one of the most abundant animal groups on the planet, many species, including many commercially important fish species, rely on planktonic copepod nauplii at some point during their life cycle. Understanding the ability of these animals to respond to changes in the environment could have direct implications into understanding the future health of our oceans.

By independently varying temperature and viscosity, Sheng recorded their movements with 3-D high speed holographic techniques developed by the Sheng lab at Texas Tech.

"At 3,000 frames per second, it was like tracking a racecar through a microscope," Sheng said. "We were able to determine that the plankton adapted to changes in viscosity by altering the rhythm of its pulsing appendage."

The response, built-in to its natural muscle fiber, was only triggered by changes in temperature, Sheng said. It could not compensate for changes in viscosity due to environmental pollution, such as algae blooms or oil spills.


Journal Reference:

  1. B. J. Gemmell, J. Sheng, E. J. Buskey. Compensatory escape mechanism at low Reynolds number. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1212148110

Note: If no author is given, the source is cited instead.

The source of this article can be found at: http://today.ttu.edu/2013/03/researcher-helps-with-important-discovery-about-plankton/

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners