Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Algae blooms create their own favorable conditions

Fertilizers are known to promote the growth of toxic cyanobacterial blooms in freshwater and oceans worldwide, but a new multi-institution study shows the aquatic microbes themselves can drive nitrogen and phosphorus cycling in a combined one-two punch in lakes.

The findings suggest cyanobacteria -- sometimes known as pond scum or blue-green algae -- that get a toe-hold in low-to-moderate nutrient lakes can set up positive feedback loops that amplify the effects of pollutants and Climate-Change'>climate change and make conditions even more favorable for blooms, which threaten water resources and public health worldwide. The findings shed new light on what makes cyanobacteria so successful and may lead to new methods of prevention and control.

The study appears in the journal Ecosphere.

"We usually think of cyanobacteria as responders to human manipulations of watersheds that increase nutrient loading, but our findings show they can also be drivers of nitrogen and phosphorus cycling in lakes," says Dartmouth Professor Kathryn Cottingham, one of the study's lead authors. "This is important because cyanobacteria are on the increase in response to global change -- both warming temperatures and land use -- and may be driving nutrient cycling in more lakes in the future, especially the clear-water, low-nutrient lakes that are so important for drinking water, fisheries and recreation."

Biogeochemical cycling is the natural recycling of nutrients between living organisms and the atmosphere, land and water. The researchers found that cyanobacterial blooms can influence lake nutrient cycling and the ability of a lake to maintain its current conditions by tapping into pools of nitrogen and phosphorus not usually accessible to phytoplankton. The ability of many cyanobacterial organisms to fix dissolved nitrogen gas is a well-known potential source of nitrogen, but some organisms can also access pools of phosphorus in sediments and bottom waters. Both of these nutrients can subsequently be released to the water column via leakage or decomposing organisms, thereby increasing nutrient availability for other phytoplankton and microbes.

Story Source:

The above story is based on materials provided by Dartmouth College. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners