Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Reducing greenhouse gas emissions with a more effective carbon capture method

Trapping carbon dioxide (CO2) emissions from power plants and various industries could play a significant role in reducing greenhouse gas emissions in the future. But current materials that can collect CO2 -- from smokestacks, for example -- have low capacities or require very high temperatures to work. Scientists are making progress toward a more efficient alternative, described in the ACS journal Chemistry of Materials, that could help make carbon capture less energy-intensive.

T. Alan Hatton and colleagues note that although industry and governments are increasingly turning to renewable energy sources such as wind and solar, the world will continue to rely on fossil fuels for the foreseeable future -- but at a cost. According to the International Energy Agency, burning fossil fuels emits more than 30 gigatons per year of CO2, a primary greenhouse gas. Some solid systems that aim to capture these emissions, such as zeolites, are sensitive to water in the gas streams. Others, such as clays and metal oxides, have to be heated up to more than 900 degrees Fahrenheit, which requires a lot of energy. Hatton's team wanted to find a way to cut this latter strategy's energy requirements.

The researchers studied a new class of materials based on magnesium oxide (MgO), which can capture larger quantities of carbon at much lower temperatures than many other substances being investigated. They discovered that coating MgO particles with substances called alkali metal nitrates boosted the amount of CO2 that material could take up by more than 10-fold. The MgO captures a significantly higher amount of CO2 (2-10 times) than other systems for a given volume. This translates into smaller equipment needs and lower plant costs. Additionally, the particles themselves are readily prepared with low-cost materials.

Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners