Chemistry 2011.org
Chemistry2011.org
All About Chemistry... 2011 and beyond

Related Stories

Mineral diversity clue to early Earth chemistry

Feb. 28, 2013Mineral evolution is a new way to look at our planet's history. It's the study of the increasing diversity and characteristics of Earth's near-surface minerals, from the dozen that arrived on interstellar dust particles when the Solar System was formed to the more than 4,700 types existing today. New research on a mineral called molybdenite by a team led by Robert Hazen at Carnegie's Geophysical Laboratory provides important new insights about the changing chemistry of our planet as a result of geological and biological processes.

The work is published by Earth and Planetary Science Letters.

Mineral evolution is an approach to understanding Earth's changing near-surface geochemistry. All chemical elements were present from the start of our Solar System, but at first they formed comparatively few minerals -- perhaps no more than 500 different species in the first billion years. As time passed on the planet, novel combinations of elements led to new minerals.

Molybdenite is the most common ore mineral of the critical metallic element molybdenum. Hazen and his team, which includes fellow Geophysical Laboratory scientists Dimitri Sverjensky and John Armstrong, analyzed 442 molybdenite samples from 135 locations and ages ranging from 2.91 billion years old to 6.3 million years old. They specifically looked for trace contamination of the element rhenium in the molybdenite, because rhenium can be used to use to gauge historical chemical reactions with oxygen from the environment.

They found that concentrations of rhenium, a trace element that is sensitive to oxidation reactions, increased significantly -- by a factor of eight -- over the past three billion years. The team suggests that this change reflects the increasing near-surface oxidation conditions from the Archean Eon more than 2.5 billion years ago to the Phanerozoic Eon less than 542 million years ago. This oxygen increase was a consequence of what's called the Great Oxidation Event, when Earth's atmospheric oxygen levels skyrocketed as a consequence of oxygen-producing photosynthetic microbes.

In addition, they found that the distribution of molybdenite deposits through time roughly correlates with five periods of supercontinent formation, the assemblies of Kenorland, Nuna, Rodinia, Pannotia, and Pangea. This correlation supports previous findings from Hazen and his colleagues that mineral formation increases markedly during episodes of continental convergence and supercontinent assembly and that a dearth of mineral deposits form during periods of tectonic stability.

"Our work continues to demonstrate that a major driving force for mineral evolution is hydrothermal activity associated with colliding continents and the increasing oxygen content of the atmosphere caused by the rise of life on Earth," Hazen said.

Hazen's other co-authors were Joshua Golden, Melissa McMillan, Robert T. Downs, Grethe Hystad, and Ian Goldstein of the University of Arizona; and Holly J. Stein and Aaron Zimmerman of Colorado State University (the former also of the Geological Survey of Norway).


Note: If no author is given, the source is cited instead.

The source of this article can be found at: http://carnegiescience.edu/news/mineral_diversity_clue_early_earth_chemistry

Share this story with your friends!

Social Networking

Please recommend us on Facebook, Twitter and more:

Other social media tools

Global Partners
Feedback

Tell us what you think of Chemistry 2011 -- we welcome both positive and negative comments. Have any problems using the site? Questions?

About us

Chemistry2011 is an informational resource for students, educators and the self-taught in the field of chemistry. We offer resources such as course materials, chemistry department listings, activities, events, projects and more along with current news releases.

Events & Activities

Are you interested in listing an event or sharing an activity or idea? Perhaps you are coordinating an event and are in need of additional resources? Within our site you will find a variety of activities and projects your peers have previously submitted or which have been freely shared through creative commons licenses. Here are some highlights: Featured Idea 1, Featured Idea 2.

About you

Ready to get involved? The first step is to sign up by following the link: Join Here. Also don’t forget to fill out your profile including any professional designations.

Global Partners