Radicals – Part 1

Explain This Observation...

Consider: A mixture of Br₂ and an alkane...

Predict: No pi bonds, therefore no reaction

Observation:

Questions: • Mechanism?
 • Why reaction occurs at 3° carbon?
Mechanism

Colorless Red

So mechanism begins with Br₂ absorbs $h \nu$

• Causes electronic excitation of lone pair electron to σ^* orbital

• Weakens σ bond

Unpaired electron = free radical

Homolytic cleavage = even distribution of bond electrons

Photolysis (photo = light; lysis = destruction) = reaction via light

Radical Fates

Now that I have a radical, what do I do with it?

• How do radicals react?

• What is a radical's motivation?

Radicals react in ways to

... reduce or resolve their electron deficiency.

... become more stable.

Three common ways in which radicals react: The Radical Fates.
Radical Fates
Radicals desire to become more stable.

Radical desires one electron to fill octet.
Electron can be provided by ________________________________.

Radical Fate #1: Add to a pi bond
• Trade pi bond (weaker) for sigma bond (stronger)

Alternate possibility: Why not?

Radical Fates
Radicals desire to become more stable.

Radical desires one electron to fill octet.
Electron can be provided by ________________________________.

Radical Fate #2: Atom transfer
• Usually trades weaker sigma bond for stronger sigma bond
Radical Fates
Radicals desire to become more stable.

Radical desires one electron to fill octet.
Electron can be provided by ________________________________.

Radical Fate #3: Radical combination
• Driven by completing two open octets, and by gaining a sigma bond

Fact: Radical mechanism steps generally have low \(\Delta G^\ddagger \)
• Therefore one formed, radicals react quickly
• [radicals] never becomes very high
• Metaphor: Finding a friend (common) versus finding your soul mate (one-of-a-kind)

Conclusion: Radical combination is common uncommon event

Back to the Radical Halogenation Mechanism...
Our mechanism so far...

What happens next? Three radical fates...
• Add to a pi bond – no pi bond present
• Atom transfer – possible
• Radical combination – possible but unlikely

What atom does Br steal?

Overall reaction is...
Therefore next mechanism step is...
Radical Halogenation Mechanism

Our mechanism so far...

\[
\begin{align*}
\text{H}_3\text{C} \quad \text{Br} \quad \text{Br} \\
\text{Br} \quad \text{H} \rightarrow 2 \cdot \text{Br}^* \\
\text{CH}_3 \quad \text{Br} \quad \text{H} \rightarrow \text{CH}_3 \\
\text{H} \quad \text{Br} \quad \text{H} \\
\end{align*}
\]

Why not...

\[
\begin{align*}
\text{H} \quad \text{Br} \\
\text{H} \quad \text{H} \quad \text{Br} \\
\text{CH}_2 \quad \text{Br} \\
\end{align*}
\]

When choosing between two potential products of a mechanism step, we generally choose ____________________________.

Radical Structure and Stability

Structure:

- *sp*\(^3\) carbon
- *sp*\(^2\) carbon

Pyramidal versus **Trigonal planar**

Which repels more strongly? One nonbonded electron Two bonded electrons

Stability

- Central electron-deficient carbon, like a carbocation
- So do radicals have same stability trends as carbocations?
Radical Stability: Degree of Substitution

Carbocations:

Methyl 1° 2° 3°

Increasing number of electron-donating groups
Increasing stability

Radicals:

Methyl 1° 2° 3°

Increasing number of electron-donating groups
Increasing stability

Radical Stability: Pi Bond Resonance

Carbocations:

Resonance hybrids

Radicals:

Conclusion

• A radical does not gain resonance stabilization from adjacent pi bond.
Radical Stability: Lone Pair Resonance

Resonance hybrid

Carbocations:
\[
\text{H}_2\text{C} \quad \overset{\circ}{} \quad \overset{\circ}{\text{H}} \quad \overset{\circ}{\text{O}} \quad \leftrightarrow \quad \text{H}_2\text{C} \quad \overset{\bullet}{\circ} \quad \overset{\circ}{\text{H}} \quad \overset{\circ}{\text{O}}
\]

Radicals:
\[
\text{H}_2\text{C} \quad \overset{\circ}{} \quad \overset{\circ}{\text{H}} \quad \overset{\circ}{\text{O}} \quad \leftrightarrow \quad \text{H}_2\text{C} \quad \overset{\bullet}{\circ} \quad \overset{\circ}{\text{H}} \quad \overset{\circ}{\text{O}}
\]

Conclusion

- A radical does not gain resonance stabilization from adjacent lone pair.

FAQ: Radical Rearrangement?

Fact: Carbocations may rearrange.

Question: Do radicals rearrange?

Answer: Radical rearrangement is likely possible never occurs.
Radical Halogenation Mechanism

Our mechanism so far...

\[
\text{\textbf{Br} Br} \quad \text{hv or heat} \quad 2 \text{\textbf{Br} +} \]

\[
\text{CH}_3 \quad \text{CH}_3 \quad \text{CH}_3 \quad \text{Br} + \text{H Br}
\]

Last step:

\[
\text{CH}_3 \quad \text{Three ways} \quad \text{CH}_3
\]

What is the final step of the mechanism?

Addition to a pi bond – no pi bond present.

Atom transfer –

Br-Br bond weaker than Br-H bond.

Radical combination –

Radical combination unlikely due to low concentration of radicals.
Radical Halogenation Mechanism

Complete mechanism:

\[\text{Br}_2 \xrightarrow{h\nu \text{ or heat}} 2 \cdot \text{Br} \cdot \]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{H} & \quad \text{H} \\
\end{align*}
\]

\[\text{CH}_3 \\
\text{Br} \quad \text{Br} \\
\text{CH}_3 \\
\]

\[+ \quad \text{Br} \cdot \]

Chain reaction: A reaction whose mechanism includes one or more steps that are repeated indefinitely, until the chain is terminated.

One photon yields (in principle) many molecules of product.

Chain Reaction Mechanism Steps

Initiation (I) – starts chain

\[\text{Br}_2 \xrightarrow{h\nu \text{ or heat}} 2 \cdot \text{Br} \cdot \]

Propagation (P) – continues chain

radicals \rightarrow radicals

Termination (T) – ends chain

radicals \rightarrow no radicals
Radicals – Part 2

\[\text{F} \quad \text{Cl} \quad + \quad \text{O}_3 \quad \rightarrow \quad \cdot \cdot \cdot \cdot \]

Radicals – Part 1 Summary

Free radical halogenation:

- Mechanism:
 \[\text{CH}_3 \quad \text{Br} \quad \text{Br} \quad \text{hv} \quad \text{or heat} \quad \rightarrow \quad 2 \cdot \text{Br} \]

- Radical: Has unpaired electron
 - Radical fates:
 - Add to pi bond
 - Atom transfer
 - Radical combination

- Radical stability:
 - Methyl < 1° < 2° < 3°
 - Pi bond resonance
 - Lone pair resonance
Radicals – Part 1 Summary

Mechanism:

\[
\text{Br} + \text{Br} \xrightarrow{h\nu \text{ or heat}} 2 \cdot \text{Br}^-
\]

\[
\text{CH}_3 + \text{Br} \xrightarrow{h\nu \text{ or heat}} \text{CH}_3\text{Br} + \text{H} - \text{Br}
\]

Chain reaction: A reaction whose mechanism includes one or more steps that are repeated indefinitely, until the chain is terminated.

Can Other Halogens Be Used?

Highly selective

\[
\text{CH}_3 \xrightarrow{h\nu \text{ or heat}} \text{Br}_2 \rightarrow \text{CH}_3\text{Br}
\]

Less selective

\[
\text{CH}_3 \xrightarrow{h\nu \text{ or heat}} \text{Cl}_2 \rightarrow \text{CH}_3\text{Cl} + \text{Cl} - \text{Cl}
\]

Nonselective

\[
\text{CH}_3 \xrightarrow{h\nu \text{ or heat}} \text{I}_2 \rightarrow \text{No reaction}
\]

\[
\text{CH}_3 \xrightarrow{h\nu \text{ or heat}} \text{F}_2 \rightarrow \text{Nonselective}
\]
More on Addition of HBr to Alkenes and Alkynes

Recall:

\[
\ce{H2C=CH2 + HBr -> H2C=CHBr}
\]

Markovnikov addition

But it’s not quite that simple...

\[
\ce{H2C=CH2 + HBr -> H2C-CHBr + H2C=CH2}
\]

Mixture

Kharasch, Mayo (1933): • Impurity = peroxide R-O-O-R
 • Adding peroxide causes 100% anti-Markovnikov addition

\[
\ce{H2C=CH2 + HBr + HO- -> H2C-CHBr + H2O}
\]

Anti-Markovnikov is major product

“Peroxide effect” observed for HBr only

More on Addition of HBr to Alkenes and Alkynes

Mechanism?

• Kharasch and Mayo show it to be a radical chain reaction
 • Radical addition to pi bond gives most stable radical

\[
\ce{H2C=CH2 + Br \rightarrow H2C-CHBr}
\]

comes from

versus

When choosing between two potential products of a mechanism step, we generally choose

Conclusion: Which adds to pi bond first? \(\ce{Br^+} \) \(\ce{H^-} \)
More on Addition of HBr to Alkenes and Alkynes

Mechanism? Radical chain = initiate then propagate

Initiation:
\[\text{HO} - \text{OH} \rightarrow 2 \text{HO}^+ \]
Weak bond

Propagation: Generate Br•

Add to make most stable radical

Last step = termination propagation

Chain continues

H-X Addition Reactions Orientation Summary

Markovnikov versus Anti-Markovnikov?

Markovnikov Anti-Markovnikov

Markovnikov Anti-Markovnikov

Markovnikov Anti-Markovnikov

Markovnikov Anti-Markovnikov

Markovnikov Anti-Markovnikov
Dioxygen and Metabolites – Biological Oxidation

Molecular Structure of Dioxygen (O₂)

- **Lewis theory predicts:** \(= \)
 - Dioxygen does not have a double bond.
 - *Simple Lewis theory gets it wrong.*
- **Quantum mechanics predicts:** \(= \)
 - Dioxygen is a diradical.
 - *Quantum mechanics gets it right.*

Organisms bathed in O₂, a diradical. Is this a problem?

- **O₂ is less reactive than most radicals**
- **Electron "leaks" from normal mitochondrial metabolic pathways**
- **Superoxide** • A radical anion
 - \(= \)
- **Hydrogen peroxide**
 - \(= \)
- **Hydroxyl radical** • Very aggressive radical
 - • Can attack DNA, lipids, proteins, etc.
 - \(= \)
Dioxygen and Metabolites – Biological Oxidation

Potential for damage to biological structures...

Phospholipid bilayer
- Contains fatty acid alkenes
- Susceptible to attack by HO•

Resonance stabilization

Fatty acid alkenes

Radical chain continues

Dioxygen and Metabolites – Biological Oxidation

Phospholipid cross-linking can lead to...
- ...membranes less flexible, distorted, and damaged
- ...reduced solubility lipid → plaque in arteries → atherosclerosis

Biological defenses against radicals: Antioxidants
- Radical scavenger enzymes
- Nonenzymatic defenses

Example: Superoxide dismutase (SOD)

Lipids susceptible to attack by HO• because ____________________________

Therefore an efficient antioxidant has ________________________________

Resonance contributors
- Reduces reactivity
- Slows chain propagation
Dioxygen and Metabolites – Biological Oxidation

Lipophilic (Hydrophobic) Antioxidants

α-Tocopherol *Main component of vitamin E*

Ubiquinone (coenzyme Q)

Carotenes *β-Carotene is shown*

Dioxygen and Metabolites – Biological Oxidation

Lipophobic (Hydrophilic) Antioxidants

Ascorbate (vitamin C)

Uric acid
Chlorofluorocarbons and Ozone Depletion

Ozone (O_3)
- Hazardous at ground level (ozonolysis!)
- Protects against high-energy solar UV in ozone layer (few ppm O_3 at 15-35 km altitude)

$$2O_3 \overset{hv}{\rightarrow} 3O_2$$

Chlorofluorocarbons (CFCs)
- Used as refrigerants, spray can propellants, etc.
- Low chemical reactivity \rightarrow atmospheric half-life typically 50-100 years
- Released in atmosphere; not removed until stratosphere (8-50 km altitude)
- Crutzen, Rowland, and Molina implicate CFCs in ozone depletion

Montreal Protocol (1987)
- Agreement to phase out manufacture and release of CFCs and related substances
- Atmosphere will fully recover by 2070
- Nobel Prize in Chemistry 1995 (www.nobelprize.org)
Chlorofluorocarbons and Ozone Depletion

Mechanism (simplified):

\[
\text{Freon 12}
\]

\[
\begin{align*}
\text{Cl} & \text{Cl} \quad \text{F} \quad \text{F} \\
\text{h} \nu & \rightarrow \text{Cl} \text{Cl} \quad \text{Cl} + \cdot \text{Cl} \\
\text{Cl} + \text{O} & \rightarrow \text{ClO} + \cdot \text{O} \\
2 \text{Cl} + \cdot \text{O} & \rightarrow \text{ClO} + \text{Cl} + \cdot \text{O} \\
\text{ClO} + \cdot \text{O} & \rightarrow \cdot \text{Cl} + \text{O} \\
\text{Cl} & \text{Cl} \quad \text{F} \quad \text{F} \\
\end{align*}
\]

Chain reaction: On average one Cl radical destroys $\sim 10^4$ O$_3$ before termination

Nitric Oxide -- NO!

Gaseous radical and air pollutant

- Presence in high altitude exhaust implicated in ozone destruction

Physiological effects

- Important for signaling between nerve cells in brain
- Endogenous antibacterial/antiparasitic
- Relaxes blood vessel wall smooth muscle (vasodilation)

Short lived: in vivo half-life ~ 10 seconds

Nobel Prize in Medicine 1998: Furchgott, Murad, and Ignarro (UCLA)
End Exam 2 Coverage